

1 | P a g e

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT I

Introduction: History – Purpose – View of Data – Database languages – Data Models – Data
Storage and Querying – Transaction management – Database Architecture – Two tier – Three
tier – Database users and Authorization.
Relational Algebra – Structure- keys – schema diagrams – Relational operations – Formal
Relational Query Languages – Relational Algebra – Tuple Relational calculus – Domain
Relational Calculus.
SQL Overview – Data Definition – basic structure – basic operations – Set Operations – Null
Values – Aggregate Functions – Nested Subqueries – Modifications of the Databases – Join
Expression – Integrity Constraints – Views – Authorization – Functions – Procedures –
Triggers – Recursive Queries.

Unit I- Two Marks

1. What is DBMS?

DBMS is a collection of interrelated data and a set of programs to access that data. The

goal is to provide the environment that is both convenient and efficient to use in retrieving

and storing data base information.

2. What are the advantages of DBMS?

 Centralized Control

 Data Independence allows dynamic change and growth potential.

 Data Duplication is eliminated with control Redundancy.

 Data Quality is enhanced.

 Controlling redundancy

 Restricting unauthorized access

 Providing multiple user interfaces

 Enforcing integrity constraints.

 Providing back up and recovery

3. What are the Disadvantages of DBMS?

 Cost of software, hardware and migration is high.

 Complexity of Backup

 Problem associated with centralization.

2 | P a g e

4. List out the applications of DBMS.

 Banking

 Airlines

 Universities

 Credit card transactions

 Tele communication

 Finance

 Sales

 Manufacturing

 Human resources

5. What are the disadvantages of File Systems?

 Data Redundancy and Inconsistency.

 Difficulty in accessing data.

 Data Isolation

 Integrity problems

 Security Problems

 Concurrent access anomalies

6. Give the levels of data abstraction?

a. Physical level

b. Logical level

c. View level

7. Define the terms

a. Physical schema

b. Logical schema.

Physical schema: The physical schema describes the database are design at the

physical level, which is the lowest level of abstraction describing how the data are

actually stored.

Logical schema: The logical schema describes the database design at the logical level,

which describes what data are stored in the database and what relationship

exists among the data.

8. What is conceptual schema?

The schemas at the view level are called subschemas that describe different views of

the database.

3 | P a g e

9. Define data model?

A data model is a collection of conceptual tools for describing data, data

relationships, data semantics and consistency constraints.

10. What is storage manager?

A storage manager is a program module th at pr ovides the interface between the

low level data stored in a database and the application programs and queries

submitted to the system.

11. What are the components of storage manager?

The storage manager components include

a) Authorization and integrity manager

b) Transaction manager

c) File manager

d) Buffer manager

12. What is the purpose of storage manager?

The storage manager is responsible for the following

a) Interaction with the file manager

b) Translation of DML commands in to low level file system commands

c) Storing, retrieving and updating data in the database

13. List the data structures implemented by the storage manager

The storage manager implements the following data structure

a) Data files

b) Data dictionary

c) Indices

14. What is a data dictionary?

A data dictionary is a data structure which stores meta data about the structure of

the database ie. the schema of the database.

15. Explain Referential Integrity.

Referential Integrity means relationship between tables. Foreign keys are used.

Foreign key is the column whose values are derived from the Primary key of the same

or some other table.

Format for creating a foreign key is given below.

Syntax:

create table <table name>(columnname data type (size) constraint

constraint_name references parent table name);

4 | P a g e

16. Define Instances and schemas.

Instances:

The collection of information stored in the database at a particular moment is called

the instance of the database.

Schemas:

The overall design of the database is called the schema of the database.

17. Define and explain the two types of Data Independence.

Two types of data independence are

Physical data independence:

The ability to modify the physical schema without causing application programs

to be rewritten in the higher levels. Modifications in physical level occur occasionally

whenever there is a need to improve performance.

Logical data independence:

The ability to modify the logical schema without causing application programs

to be rewritten in the higher level (external level). Modifications in physical level occur

frequently more than that in physical level, whenever there is an alteration in the

logical structure of the database.

18. Define transaction.

A transaction is a collection of operations that performs a single logical function

in a database application. Each transaction is a unit of both atomicity and consistency.

Properties of transaction are atomicity, consistency, isolation, and durability.

19. Define the type types of DML.

Two types:

Procedural DML:

It requires a user to specify what data are needed and how to get those data.

Non-Procedural DML:

It requires a user to specify what data are needed without specifying how to get

those data.

20. List out the functions of DBA.

 Schema definition

 Storage structure and access-method definition

 Schema and physical modification

 Granting of authorization for data access

 Integrity constraint specification

5 | P a g e

21. What is the need for DBA?

The need of DBA is to have central control of both the data and the programs

that access those data. The person who has such central control over the system is

called the DataBase Administrator.[

22. Define weak and strong entity sets?

 Weak entity set

Entity set that do not have key attribute of their own are called weak

entity sets.

 Strong entity set

Entity set that has a primary key is termed a strong entity set.

23. What does the cardinality ratio specify?

 Mapping cardinalities or cardinality ratios express the number of entities to which

another entity can be associated. Mapping cardinalities must be one of the following:

• One to one

• One to many

• Many to one

• Many to many

24. Explain the two types of participation constraint.

Total

The participation of an entity set E in a relationship set R is said to be total if

every entity in E participates in at least one relationship in R.

Partial

If only some entities in E participate in relationships in R, the participation

of entity set E in relationship R is said to be partial.

25. Explain DML pre-compiler.

DML pre-compiler converts DML statements embedded in an application

program to normal procedure calls in the host language. The pre-compiler must

interact with the DML compiler to generate the appropriate code.

26. Define file manager and buffer manager.

File manager:

File manager manages the allocation of space on disk storage and the data

structures used to represent information stored on disk.

Buffer manager:

Buffer manager is responsible for fetching data from the disk storage into the

main memory, and deciding what data to cache in memory.

6 | P a g e

27. Define Data Dictionary.

DDL statements are compiled into a set of tables that is stored in a special file called

data dictionary. Data dictionary contains the meta-data, which in turn is data about the

data.

28. What is a query language?

 The query language is the language in which a user request information from

the database. These languages are usually on a level higher than that of a standard

programming language.

29. What in procedural and non procedural languages?

 In procedural languages, the user instructs the system to perform a sequence of

operation on the database to compute the desired result. In nonprocedural language,

the user describes the desired information without giving a specific procedure for

obtaining that information.

30. What in Cartesian –product operation?

 The Cartesian –product operation denoted by a cross(X), allows us to combine

information from any two relations. We write the Cartesian product of relations r1

and r2 as r1 x r2.

31. Define domain?

For each attribute, there is a set of permitted values called the domain. For the

attribute branch name, for example, the domain is the set of all branches name.

32. Define relation?

Relation to be a subset of a Cartesian product of a list of domains.

33. Define tuples?

A tuple variable is a variable that stands for a tuple, in other words a tuple

variable is a variable whose domain is the set of all tuples.

34. What is the relation schema?

The concept of a relation schema corresponds to the programming –language

notion of type definition. We use Account –schema to denote the relation schema for

relation account. Account-schema = (account-number, branch-name, balance). We

denote the fact that account is a relation on Account –schema by Account (Account-

schema).

35. What is database schema?

Database schema in the logical design of the database.

36. What is database instance?

 Database instance is a snapshot of the data in the database at a given instant in time.

7 | P a g e

37. What is relation instance?

 The concept of a relation instance corresponds to the programming language notion of

a value of a variable.

38. What is relational algebra?

 The relational algebra is a procedural query language .It consists of set of operations

that take one or two relations as input and produce a new relation as their result. The

fundamental operation in the relational algebra is select, project, union, set difference,

Cartesian product and rename.

39. What is select operation?

 The select operation selects tuples that satisfy a given predicate .we use the lower case

Greek letter sigma (σ) to denote selection. The predicate appears as a subscript to σ .The

argument relation in parentheses after the σ

40. Describe extended relational operation?

 The basic relation –algebra operation have been extended in several ways.

The simple extension is to allow arithmetic operations as part of projection. An important

extension is to allow aggregate operations such as computing the sum of the elements of a set

or their average.

41. What is meant by aggregate function?

 Aggregate function takes a collection of values and return a single value as a result.

42. What is meant by multiset?

The collections on which aggregate functions operates can have multiple Occurrences

of value; the order in which the value appear in not relevant .such collections are called as

multisets.

43. What is outer join?

 Outer join operation is an extension of the join operation to deal with missing

information. Suppose that we have the relations with the following schemas ,which contains

data on full-time table name.

44. What are the types of outer join?

 left outer join

 right outer join

 full outer join

45. What is meant by null values?

 The special values are called as Null values indicates “value unknown or non-existent”,

any arithmetic operation such as (+,-,*, /) involving null values must return a null result.

8 | P a g e

46. In SQL operation how the different relational operations deal with null values?

 select

 join

 projection

 union, intersection, difference

 generalized projection

 aggregate

 outer join

47. Define modification of database?

 It contains following operations like

 deletion

 insertion

 update

48. Define view?

 We define a view by using the create view statement . To define a view, we must give

the view a name ,and must state the query the computes the view. The form of create

view statement is Create view v as <query expression>.

49. What is meant by tuple relation calculus?

The tuple relation calculus, by contrast is a, non procedural query language .It describes the

desired information without giving the specific procedure for obtaining that information. A

query in the tuple relational calculus is expressed as {t|P(t)}

50. What is meant by domain relation calculus?

 A second form of relational calculus are called domain relational calculus.

51. What are the parts of SQL languages?

 There are several parts in SQL language

 Data-definition language(DDL)

 Interactive data manipulation language(DML)

 View definition

 Transaction control

 Embedded SQL and dynamic SQL

 Integrity

 Authorization

52. Explain the basic structure SQL?

 The basic structure of an SQL expression consist of three clauses;

Select from where

9 | P a g e

53. Define select clause?

 The select clause corresponds to the projection operation of the relational algebra. It is

used to list the attribute desired in the result of query.

54. Define from clause?

 The from clause corresponds to Cartesian –product operation of the relational algebra.

It lists the relations, to be scanned in the evaluation of the expression.

55. Define where clause?

 The where clause corresponds to selection predicate the relational algebra.

56. Write query for rename operation?

 The query is old- name as new-name. eg:

select customer- name ,borrower .loan- number ,amount

from borrower, Loan

where borrower .loan -number =loan. Loan- number.

The result of this query is a relation with following attributes:

Customer –name ,loan-number, amount.

57. Define tuple variable?

 The as clause is particularly useful in defining the notion of tuple variables, as is done

in the tuple relational calculus. A tuple variable in SQL must be associated with a particular

relation. Tuple variable are defined in the from clause by way of the as clause.

58. Define ordering the display of tuples?

 The order by clause causes the tuples in the result of query to appear in sorted order .

By default, the order by clause list item in ascending order to specify the sorted order, we

may specify desc for descending order asc for ascending order.

59. What are the set operations available in SQL?

The SQL operations are

 union operation(U)

 intersection operation(∩)

 except operation(-)

60. What is union operation?

 To find all the customer having a loan, and account , or both at bank, we

write query as follow(Select customer- name from depositor)

 Union

(select customer name from borrower)

The union operation automatically eliminates duplicates. If we want to retain all duplicates

we must write union all in the place of union.

10 | P a g e

61. Describe intersection operation?

 To find all the customer having both a loan, and account at a bank.

 (Select distinct customer- name from depositor)

 intersection

(select distinct customer name from borrower)

The intersection operation automatically eliminates duplicates . If we want to retain all

duplicates we must write intersection all in the place of intersection.

62. Define aggregate function?

 Aggregate functions are the functions that take a collection (a set or multiset) of

values as input and return a single value.

63. What are the 5 built-in aggregate functions in SQL?

 Average : avg

 Minimum : min

 Maximum :max

 Total : sum

 Count :count

64. Define group by clause?

 In SQL using group by clauses, the attribute or attributes given in the group by

clauses are used to form groups. Tuple with same values on all attributes in group by clause

are placed in one group .we write query as: Select branch name, avg (balance) from

account group by branch name

65. Define nested subqueries?

 SQL provides a mechanism for nesting subqueries. A subquery is a select- from-where

expression that is nested with in another query.

66. Define with clause?

 The with clause provides a way of defining a temporary view whose definition

is available only to the query in which the with clause occur.

67. What is mean Transaction?

 A transaction consist of a sequence of query and / or update statement. The SQL

standard specify that the transaction begins implicitly when an SQL statement executed

68. What are the types of transaction available in SQL?

Commit work: commits the current transaction; that is, it makes the updates

performed by the transaction become permanent in the database . After the transaction is

committed , a new transaction is automatically started.

Roll back work : It causes the current transaction to be roll back ; that is ,it un-does all

the updates performed by SQL statement in the transaction

11 | P a g e

69. Domain types in SQL?

 The SQL standard support variety of built in domain types including

 Char (n)

 Varchar (n)

 Int

 Smallint

 numeric(p,d)

 real, double precision

 float(n)

 date

 time

 timestamp-(combination of date and time)

70. What is meant by check constraint?

 Check (P): The check clause specify the predicate P that must be satisfied by the every

tuple in the relation Create table account

(account-name char(10),

branch-name char(10),

balance integer,

primary key(account-number),

check (balance>=0))

71. Define ODBC?

 The open database connectivity (ODBC) standard defines a way for a application

program to communicate with a database server. ODBC defines an application program

interface (API) that application can use to open a connection with database send queries and

update and get back results.

72. What is meant JDBC?

 JDBC standard defines an API the java program can use to connect to database server.

JDBC-java database connectivity

73. Describe Query- by- Example(QBE)?

 The QBE is the name of both a data manipulation language and an early database

system that includes this language .

74. What is meant by condition box?

 The condition box that allows the expression of general constrain over any of the

domain variables. QBE allows logical expression to appear in a condition box . the logical

operation are the words AND and OR, or the symbols “&”and”|”.

12 | P a g e

75. What is meant by datalog?

 The datalog is a non procedural query language based on the logic-programming

prolog. As in the relation calculus a user describes the information decide without giving a

specific procedure for obtaining that information. The syntax of datalog resembles that a

prolog.

76. Describe user inter face and tools?

 Although many people interact with database, few people use query language to

directly interact with the database system. Most of the people interact with the database

system through one of this following means:

* Forms and GUI

* Report generator

 Data analysis tools

77. Define forms and GUI?

 Allows user to enter the values that complete predefined queries. The GUI (Graphical

User Interface)provides an easy to use way to interact with the database System.

78. What is relational model?

 The relational model used the basic concept of a relation or table. The columns or

fields in the table identify the attributes such as name, age, and so. A tuple or row contains

all the data of a single instance of the table such as a person named Doug. In the relational

model, every tuple must have a unique identification or key based on the data.

79. Name any three RDBMS packages

Oracle (48.8%), IBM (20.2%), Microsoft (17.0%), SAP including Sybase (4.6%), and

Teradata (3.7%).

80. What is integrity constraint?

 Integrity constraint ensure that changes made to the database by authorized users do

not result in a loss of data consistency.

81. What is domain constraint?

Domain constraint are the most elementary form of integrity constraint they are tested easily

by the system whenever a new data item is entered into database

82. What is referential integrity?

 To ensure a a value that appears in one relation for a given set of attributes also

appears for certain set of attributes in another relation.

83. What is database modification?

 insert

 delete

 update

http://en.wikipedia.org/wiki/Oracle_Corporation
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/SAP_AG
http://en.wikipedia.org/wiki/Sybase
http://en.wikipedia.org/wiki/Teradata

13 | P a g e

84. What is referential integrity in SQL?

 Foreign key can be specified as a part of the sql ‘create table’ statement by using the

foreign key clause. A. foreign key references the primary key attributes of the referenced

table.

Example:

Create table stud (rno number (2),status varchar(5), foreign key(no) references student

(regno));

85. What is assertions?

An assertion is a predicate expressing a condition that we wish the database always to satisfy.

An assertion in sol takes the form,

Query: Create assertion<assertion-name>check<predicate>

86. What is a trigger?

A trigger is a statement that the system executes automatically as a side effect of a

modification to the database. There are two requirements to design a trigger mechanisms

 specify when a trigger is to executed. This is broken up into an event that causes the

trigger to be checked and a condition that must be satisfied for trigger execution to

proceed.

 specify the actions to be taken when the trigger executes.

87. Why triggers are needed?

Trigger are useful mechanisms for altering humans or for staring certain task automatically

when certain conditions are met.

88. When not to use to trigger?

 Triggers should not be used, when an insert trigger on a relation has an action that

causes another insert action to be stimulated.

 Long chain of triggers should not be used, because it considers them as error.

89. What is security?

Data stored in the database need protection from unauthorized access and malicious

destruction.

90. What is security violation?

 Unauthorized reading of data.

 Unauthorized modification of data

 Unauthorized destruction of data

91. What are levels of security?

 Database system

 Operating system

14 | P a g e

 Network

 Physical

 Human

92. What are the several form of authorization?

 Read authorization-allows reading, but not modification of data

 Insert authorization- allows insertion of new data but not modification of existing data

 Update authorization- allows modification but not deletion of data.

 Delete authorization-allows deletion

 Index authorization-allows the creation of new relations

 Resource authorization- allows the creation of new relations

 Alteration authorization- allows the addition or deletion of attributes in a relation

 Drop authorization-allows the deletion of relations

93. What is authorization graph?

The passing of authorization from one user to another can be represented by an authorization

graph.

94. What is notion of roles?

Roles include teller, branch manager, system administrator. The notion of roles capture the

schema. The set of roles is created in the database. Authorization can be granted to roles. Each

database user is granted a set of roles.

95. What is an audit trail? (APRIL 2011)

An audit trail is a log of changes(insert, delete, update) to the database along with information

such as which user performed the change and when the change was performed.

96. What is encryption?

Encryption forms the basis of good schemes for authenticating users to a database. The

various provisions that a database may make for authorization may still not provide sufficient

protection for high sensitive data.. in such cases data may be stored in encrypted form.

97. What are the encryption techniques?

A good encryption technique has the following techniques

 It is relatively simple for authorization users to encrypt and decrypt data.

 It depends not on the secrecy of the algorithm, but rather on a parameter of the

algorithm called the encryption key.

 Its encryption key is extremely difficult for an intruder to determine.

98. What is authentication?

It refers to the task of verifying the identity of the person./software connecting to the

database.

15 | P a g e

99. What is authorization?

The ultimate aim of authorization is to give authority to the database administrator. The

database administrator may authorize new users, restructure the database using read, insert,

update, delete, index, resource, alter, drop authorization.

100. What are the forms of assertion?

 Domain constraint

 Referential integrity constraint

101. What are the parts of SQL language?

The SQL language has several parts:

 data – definition language

 Data manipulation language

 View definition

 Transaction control

 Embedded SQL

 Integrity

 Authorization

102. What are the categories of SQL command?

SQL commands are divided in to the following categories:

1. data - definition language

2. data manipulation language

3. Data Query language

4. data control language

5. data administration statements

6. transaction control statements

103. What are the three classes of SQL expression?

SQL expression consists of three clauses:

 Select

 From

 where

104. Give the general form of SQL query?

Select A , A …………., An

1 2

Fro m R , R ……………, R

1 2 m

Where P

16 | P a g e

105. What is the use of rename operation?

Rename operation is used to rename both r elations and a attributes.

It uses the as clause, taking the form:

 Old-name as new-name

106. Define tuple variable?

Tuple variables are used for comparin g two tuples in the same relation. The

tuple variables are defined in the from clause by way of the as clause.

107. List the string operations supported by SQL?

1) Pattern matching Operation

2) Concatenation

3) Extracting character strings

4) Converting between uppercase and lower case letters.

108. List the set operations of SQL?

1) Union

2) Intersect operation

3) The except operation

109. What is the use of Union and intersection operation?

Union : The result of this operation includes all tuples that are either in r1 or in r2 or

in both r1 and r2.Duplicate tuples are automatically eliminated.

Intersection: The result of this relation includes all tuples that are in both r1 and

r2.

110. What are aggregate functions? And list the aggregate functions

 supported by SQL?

Aggregate functions are functions that take a collection of values as input and

return a single value. Aggregate functions supported by SQL are

 Average: avg

 Minimum: min

 Maximum: max

 Total: sum

111. What is the use of group by clause?

 Group by clause is used to apply aggregate functions to a set of tuples.The

attributes given in the group by clause are used to form groups.Tuples with the

same value on all attributes in the group by clause are placed in one group.

17 | P a g e

112. What is the use of sub queries?

 A sub query is a select-from-where expression that is nested with in

another query. A common use of sub queries is to perform tests for set membership,

make setcomparisions, and determine set cardinality.

113. What is view in SQL? How is it def ined? NOV 2014

Any relation that is not part of the logical model, but is made visible to a user as

a virtual relation is called a view. We define view in SQL by using the create view

command. The form of the create view command is

 Create view v as <quer y expression>

114. What is the use of with clause in SQL?

 The with clause provides a way of defining a temporary view whose

definition is available only to the query in which the with clause occurs.

115. List the table modification commands in SQL?

 Deletion

 Insertion

 Updates

 Update of a view

116. List out the statements associated with a database transaction?

 Commit work

 Rollback work

117. What is transaction?

 Transaction is a unit of program ex ecution that accesses and possibly updated

various data items.

118. List the SQL domain Types?

SQL supports the following domain types.

1) Char(n) 2) varchar(n) 3) int 4) numeric(p,d)

5) float(n) 6) date.

119. What is the use of integrity constraints?

Integrity constraints ensure that changes made to the database by authorized

users do not result in a loss of data consistency. Thus integrity constraints guard

against accidental damage to the database.

120. Mention the 2 forms of integrity constraints in ER model?

 Key declarations

 Form of a relationship

18 | P a g e

121. What is trigger? NOV 2010

 Triggers are statements that are executed automatically by the system as the

side effect of a modification to the database.

122. What are domain constraints?

 A domain is a set of values that may be assigned to an attribute .all values

that appear in a column of a relation must be taken from the same domain.

123. What are referential integrity constraints?

 A value that appears in o ne relation for a given set of attributes also appears

for a certain set of attributes in another relation.

124. What is assertion? Mention the forms available.

 An assertion is a predicate ex pressing a condition that we wish the database

always to satisfy.

 Domain integrity constraints.

 Referential integrity constraints

125. Give the syntax of assertion?

Create assertion <assertion name> check <predicate>

126. What is the need for triggers?

Triggers are useful mechanisms for alerting humans or for starting certain

tasks automatically when certain conditions are met.

127. List the requirements needed to design a trigger.

 The requirements are

 Specifying when a trigger is to be executed.

 Specify the actions to be taken when the trigger executes.

128. Give the forms of triggers?

 The triggering event can be insert or delete.

 For updated the trigger can specify columns.

 The referencing old row as clause

 The referencing new row as clause

 The triggers can be initiated before the event or after the event.

129. What does database security refer to?

 Database security refers to the protection from unauthorized access and

malicious destruction or alteration.

19 | P a g e

130. List some security violations (or) name any forms of malicious access.

 Unauthorized reading of data

 Unauthorized modification of data

 Unauthorized destruction of data.

131. List the types of authorization.

 Read authorization

 Write authorization

 Update authorization

 Drop authorization

132. What is authorization graph?

 Passing of authorization from one user to another can be represented by an

 authorization graph.

133. List out various user authorization to modify the database schema.

 Index authorization

 Resource authorization

 Alteration authorization

 Drop authorization

134. What are audit trails?

 An audit trail is a log of all changes to the database along with information

such as which user perfo rmed the change and when th e change was performed

135. Mention the various levels in security measures.

 Database system

 Operating system

 Network

 Physical

 human

136. Name the various privileges in SQL?

 Delete

 Select

 Insert

 update

137. Mention the various user privileges.

 All privileges directly granted to the user or role.

 All privileges granted to roles that have been granted to the user or role.

20 | P a g e

138. Give the limitations of SQL authorization.

 The code for checking authorization becomes intermixed with the rest of the

application code.

 Implementing autho rization through application code rather than specif ying it

declaratively in SQL makes it hard to ensure th e absence of loopholes.

139. Give some encryption techniques?

 DES

 AES

 Public key encryption

140. What does authentication refer?

Authentication refers to the task of verifying the identity of a person.

141. List some authentication techniques.

 Challenge response scheme

 Digital signatures

 Nonrepudiation

21 | P a g e

11 MARK QUESTION AND ANSWERS

1. Explain in detail about Database management systems(6 Marks)

Database Management System (DBMS) is a Collection of interrelated data s Set of programs

to access the data s DBMS contains information about a particular enterprise s DBMS provides

an environment that is both convenient and efficient to use.

 Database Applications:

 Banking: all transactions

 Airlines: reservations

 Universities: registration, grades

 Sales: customers, products, purchases

 Manufacturing: production, inventory, orders, supply chain

 Human resources: employee records, salaries, tax deductions

Database applications were built on top of file systems. Drawbacks of using file systems

to store data:

 Data redundancy and inconsistency Multiple file formats, duplication of information in

different files.

 Difficulty in accessing data Need to write a new program to carry out each new task

 Data isolation — multiple files and formats

 Integrity problems Integrity constraints (e.g. account balance > 0) become part of

program code Hard to add new constraints or change existing ones Database System

Concepts

 Atomicity of updates Failures may leave database in an inconsistent state with partial

updates carried out E.g. transfer of funds from one account to another should either

complete or not happen at all

 Concurrent access by multiple users Concurrent accessed needed for performance

Uncontrolled concurrent accesses can lead to inconsistencies – E.g. two people reading

a balance and updating it at the same time

 Security problems s Database systems offer solutions to all the above problems

22 | P a g e

2. Explain in detail about view of data and levels of Abstraction(11 Marks)

A database system is a collection of interrelated data and a set of programs that allow

users to access and modify these data. A major purpose of a database system is to provide

users with an abstract view of the data. That is, the system hides certain details of how the

data are stored and maintained.

Data Abstraction:

For the system to be usable, it must retrieve data efficiently. The need for efficiency has

led designers to use complex data structures to represent data in the database. Since many

database-system users are not computer trained, developers hide the complexity from users

through several levels of abstraction, to simplify users' interactions with the system:

Levels of Abstractions:

 Physical level describes how a record (e.g., customer) is stored.

 Logical level: describes data stored in database, and the relationships among the

data. The Logical level thus describes the entire database in terms of a small

number of relatively simple structures. Although implementation of the simple

structures at the logical level may involve complex physical-level structures, the

user of the logical level does not need to be aware of this complexity. Database

administrators, who must decide what information to keep in the database, use the

logical level of abstraction.

 View level. The highest level of abstraction describes only part of the entire

database. Even though the logical level uses simpler structures, complexity remains

because of the variety of information stored in a large database. Many users of the

database system do not need all this information; instead, they need to access only

a part of the database. The view level of abstraction exists to simplify their

interaction with the system. The system may provide many views for the same

database. Figure 1.1 shows the relationship among the three levels of abstraction.

23 | P a g e

Fig 1.1 Three levels of abstraction.

 For example, in a Pascal-like language/ we may declare a record as follows:

type customer = record

name: string;

street: string;

city: string;

Street: string;

 end;

 This code defines a new record type called customer with four fields. Each field has

a name and a type associated with it. A banking enterprise may have several such record

types, including

o Account with fields account_ number and balance

o Employee with fields employee-name and salary

 At the physical level, a customer, account, or employee record can be described as a block

of consecutive storage locations (for example, words or bytes). The compiler hides this

level of detail from programmers. Similarly, the database system hides many of the lowest

level storage details from database programmers. Database administrators, on the other

hand, may be aware of certain details of the physical organization of the data.

 At the logical level, each such record is described by a type definition, as in the previous

code segment, and the interrelationship of these record types is defined as well.

Programmers using a programming language work at this level of abstraction. Similarly,

database administrators usually work at this level of abstraction.

24 | P a g e

 Finally, at the view level, computer users see a set of application programs that hide

details of the data types. Similarly, at the view level several views of the database are

defined, and database users see these views. In addition to hiding details of the logical

level of the database, the views also provide a security mechanism to prevent users from

accessing certain parts of the database. For example, tellers in a bank see only that part of

the database that has information on customer accounts; they cannot access information

about salaries of employees.

3. Explain in detail about Instances & Schemas(5 Marks)

Databases change over time as information is inserted and deleted. The collection of

information stored in the database at a particular moment is called an instance of the

database. The overall design of the database is called the database schema. Schemas are

changed infrequently, if at all.

The concept of database schemas and instances can be understood by analogy to a

program written in a programming language. A database schema corresponds to the variable

declarations (along with associated type definitions) in a program. Each variable has a

particular value at a given instant. The values of the variables in a program at a point in time

correspond to an instance of a database schema.

Database systems have several schemas, partitioned according to the levels of abstraction.

The physical schema describes the database design at the physical level, while the logical

schema describes the database design at the logical level. A database may also have several

schemas at the view level, sometimes called subschemas that describe different views of the

database.

Of these, the logical schema is by far the most important, in terms of its effect on

application programs, since programmers construct applications by using the logical schema.

The physical schema is hidden beneath the logical schema, and can usually be changed easily

without affecting application programs. Application programs are said to exhibit physical data

independence if they do not depend on the physical schema, and thus need not be rewritten if

the physical schema changes.

25 | P a g e

4. Explain in detail about Data Models(6 Marks)

The data model is defined as a collection of conceptual tools for describing data, data

relationships, data semantics, and consistency constraints. A data model provides a way to

describe the design of a database at the physical, Logical, and view level. There are a number

of different data models. The data models can be classified in four different categories:

1. Relational Model

2. The Entity-Relationship Model

3. Object-Based Data Model.

4. Semi Structured Data Model

Relational Model: The relational model uses a collection of tables to represent both data and

the relationships among those data. Each table has multiple columns, and each column has a

unique name. The relational model is an example of a record-based model. Record-based

models are so named because the database is structured in fixed-format records of several

types. Each table contains records of a particular type. Each record type defines a fixed

number of fields, or attributes. The columns of the table correspond to the attributes of

the record type. The relational data model is the most widely used data model, and a vast

majority of current database systems are based on the relational model.

Entity-Relationship Model: The entity-relationship (E-R) data model is based on a

perception of a real world that consists of a collection of basic objects called entities and of

relationships among these objects. An entity is a "thing" or "object" in the real world that is

distinguishable from other objects. The entity-relationship model is widely used in database

design.

Object-Based Data Model: The object-oriented data model is another data model that has

seen increasing attention. The object-oriented model can be seen as extending the E-R model

with notions of encapsulation, methods (functions), and object identity. The object-relational

data model combines features of the object-oriented data model and relational data model.

Semi structured Data Model: The semi structured data model permits the specification of

data where individual data items of the same type may have different sets of attributes. This is

in contrast to the data models mentioned earlier, where every data item of a particular type

must have the same set of attributes. The Extensible Markup Language (XML) is widely used

to represent semi structured data.

26 | P a g e

5. Explain in detail about Database Languages and its types(11 Marks)

A database system provides a data-definition language to specify the database schema and

a data-manipulation language to express database queries and updates. In practice, the data-

definition and data-manipulation languages are not two separate language instead they

simply form parts of a single database language, such as the widely used SQL language.

Data Manipulation Language: A data-manipulation language (DML) is a language that

enables users to access or manipulate data as organized by the appropriate data model. The

types of access are:

 Retrieval of information stored in the database

 Insertion of new information into the database

 Deletion of information from the database

 Modification of information stored in the database

There are basically two types:

 Procedural DMLs require a user to specify what data are needed and how to get those

data.

 Declarative DMLs (also referred to as nonprocedural DMLs) require a user to specify

what data are needed without specifying how to get those data.

Declarative DMLs are usually easier to learn and use than are procedural DMLs. However,

since a user does not have to specify how to get the data, the database system has to figure out

an efficient means of accessing data. A query is a statement requesting the retrieval of

information. The portion of a DML that involves information retrieval is called a query

language. Although technically incorrect, it is common practice to use the terms query

language and data manipulation language synonymously.

Data Definition Language: We specify a database schema by a set of definitions expressed by

a special language called a data-definition language (DDL). The DDL is also used to specify

additional properties of the data. We specify the storage structure and access methods used

by the database system by a set of statements in a special type of DDL called a data storage

and definition language. These statements define the implementation details of the database

schemas, which are usually hidden from the users.

The data values stored in the database must satisfy certain consistency constraints. For

example, suppose the balance on an account should not fall below RS. 100. The DDL provides

27 | P a g e

facilities to specify such constraints. The database systems check these constraints every time

the database is updated. In general, a constraint can be an arbitrary predicate pertaining to

the database. However, arbitrary predicates may be costly to test. Thus, database systems

concentrate on integrity constraints that can be tested with minimal overhead.

Domain Constraints: A domain of possible values must be associated with every attribute

(for example, integer types, character types, date/time types). Declaring an attribute to be of

a particular domain acts as a constraint on the values that it can take. Domain constraints are

the most elementary form of integrity constraint. They are tested easily by the system

whenever a new data item is entered into the database.

Referential Integrity: There are cases where we wish to ensure that a value that appears in

one relation for a given set of attributes also appears for a certain set of attributes in another

relation (referential integrity). Database modifications can cause violations of referential

integrity. When a referential integrity constraint is violated, the normal procedure is to reject

the action that caused the violation.

Assertions: An assertion is any condition that the database must always satisfy. Domain

constraints and referential-integrity constraints are special forms of assertions. However,

there are many constraints that we cannot express by using only these special forms. For

example, "Every loan has at least one customer who maintains an account with a minimum

balance of Rs.1000.00 must be expressed as an assertion. When an assertion is created, the

system tests it for validity. If the assertion is valid, then any future modification to the

database is allowed only if it does not cause that assertion to be violated.

Authorization: We may want to differentiate among the users as far as the type of access

they are permitted on various data values in the database. These differentiations are

expressed in terms of authorization, the most common being, read authorization, which

allows reading, but not modification, of data; insert authorization, which allows insertion of

new data, but not modification of existing data; update authorization, which allows

modification, but not deletion, of data and delete authorization, which allows deletion of

data. We may assign the user all, none, or a combination of these types of authorization

The DDL, just like any other programming language, gets as input some instructions

(statements) and generates some output. The output of the DDL is placed in the data

dictionary, which contains metadata-that is, data about data. The data dictionary is

considered to be a special type of table, which can only be accessed and updated by the

database system itself (not a regular user). A database system consults the data dictionary

before reading or modifying actual data.

28 | P a g e

6. Describe the Structure of Relational Databases (This Questions consists of 4

Parts where each having the weightage of asking separately in 6 marks, 11 marks and 5

Marks)

A relational database consists of a collection of tables, each of which is assigned a

unique name. A row in a table represents a relationship among a set of values.

Informally, a table is an entity set, and a row is an entity. Since a table is a collection of

such relationships, there is a close correspondence between the concept of table and

the mathematical concept of relation, from which the relational data model takes its

name. In what follows, we introduce the concept of relation.

1. Basic Structure of Relational Database(11 Marks)

2. Database Schema & Schema Diagram of Relational Database(11 Marks)

3. Keys of Relational Database(6 Marks)

4. Query Languages(4 marks)

(i).Basic Structure of Relational Database(11 Marks)

Consider the account table of Figure 1.2 shown below. It has three column headers:

account_number, branch-name and balance.

1.2 Account Relation

For each attribute, there is a set of permitted values, called the domain of that

attribute. For the attribute branch-name for example, the domain is the set of all branch

names. Let Dl denote the set of all account numbers, D2 the set of all branch names, and D3

the set of all balances. Any row of account must consist of a 3-tuple (u1, u2, u3) where 'u1i s

an account number (that is, u1 is in domain D1), u2 is a branch name (that is, u2 is in domain

D2), and u3 is a balance (that is, u3 is in domain D3). In general, account will contain only a

subset of the set of all possible rows. Therefore, account is a subset o f D l x D 2 x D 3.

In general, a table of n attributes must be a subset of D1 x D2 x ------ x Dn-1 x Dn

Mathematicians define a relation to be a subset of a Cartesian product of a list of domains.

29 | P a g e

This definition corresponds almost exactly with our definition of table. The only difference is

that we have assigned names to attributes, whereas mathematicians rely on numeric "names,"

using the integer 1 to denote the attribute whose domain appears first in the list of domains, 2

for the attribute whose domain appears second, and so on. Because tables are essentially

relations, we shall use the mathematical terms relation and tuple in place of the terms table

and row. A tuple variable is a variable that stands for a tuple; in other words, a tuple variable

is a variable whose domain is the set of all tuples.

In the account relation of Figure 1.2. There are seven tuples. Let the tuple variable “t”

refer to the first tuple of the relation. We use the notation t [account-number] to denote the

value of “t” on the account-number attribute. Thus, t[account-number]= "A-101," and

t[branch-name]= "Downtown". Alternatively we may write t[1] to denote the value of tuple t

on the first attribute (account-number), t[2] to denote branch_name and so on. Since a

relation is a set of tuples, we use the mathematical notation of t € r to denote that tuple t is in

relation r.

The order in which tuples appear in a relation is irrelevant, since a relation is a set of

tuples. Thus, whether the tuples of a relation are listed in sorted order, as in Figure 1.2 shown

above , or are unsorted, as in Figure 1.3 as shown below , does not matter; the relations in the

two figures are the same, since both contain the same set of tuples. We require that, for all

relations r, the domains of all attributes of r be atomic. A domain is atomic if elements of the

domain are considered to be indivisible units. For example, the set of integers is an atomic

domain, but the set of all sets of integers is a non atomic domain. The distinction is that we do

not normally consider integers to have subparts, but we consider sets of integers to have

subparts-namely, the integers composing the set. The important issue is not what the domain

itself is, but rather how we use domain elements in our database. The domain of all integers

would be non atomic if we considered each integer to be an ordered list of digits. In all our

examples, we shall assume atomic domains.

1.3 Account Relation with unordered tuples

30 | P a g e

 It is possible for several attributes to have the same domain. For example, suppose

that we have a relation customer that has the three attributes customer-name, customer -

street, and customer city, and a relation employee that includes the attribute employee -name.

It is possible that the attributes customer_name and employee name will have the same

domain: the set of all person names, which at the physical level is the set of all character

strings. The domains of balance and branch_name, on the other hand, certainly ought to be

distinct. It is perhaps less clear whether customer_name and branch_name should have the

same domain. At the physical level, both customer names and branch names are character

strings. However, at the logical level, we may want customer_name and branch_name to have

distinct domains.

One domain value that is a member of any possible domain is the null value, which

signifies that the value is unknown or does not exist. For example, suppose that we include

the attribute telephone-number in the customer relation. It may be that a customer does not

have a telephone number, or that the telephone number is unlisted. We would then have to

resort to null values to signify that the value is unknown or does not exist.

(ii). Database Schema & Schema Diagram of Relational Database (11 Marks)

The database schema, which is the logical design of the database, and the database

instance, which is a snapshot of the data in the database at a given instant in time. The

concept of a relation corresponds to the programming-language notion of a variable. The

concept of a relation schema corresponds to the programming-language notion of type

definition.

It is convenient to give a name to a relation schema, just as we give names to type

definitions in programming languages. We adopt the convention of using lowercase names for

relations, and names beginning with an uppercase letter for relation schemas. Following this

notation, we use Account-schema to denote the relation schema for relation account. Thus,

“Account_schema = (account_number, branch_name, balance)”

We denote the fact that account is a relation on Account_schema by account (Account-

schema).

In general, a relation schema consists of a list of attributes and their corresponding domains.

The concept of a relation instance corresponds to the programming-language notion of a

value of a variable. The value of a given variable may change with time; similarly the contents

of a relation instance may change with time as the relation is updated. However, we often

simply say "relation" when we actually mean "relation instance."

As an example of a relation instance consider the branch relation of Figure 1.4. as shown

below

31 | P a g e

Figure1.4. Branch Relation

The schema for that relation is

“Branch_schema=(branch_name, branch_city, assets)”

Note that the attribute branch-name appears in both Branch_schema and Account _schema.

This duplication is not a coincidence. Rather, using common attributes in relation schemas is

one way of relating tuples of distinct relations. For example, suppose we wish to find the

information about all of the accounts maintained in branches located in Brooklyn. We look

first at the branch relation to find the names of all the branches located in Brooklyn. Then, for

each such branch, we look in the account relation to find the information about the accounts

maintained at that branch.

Let us continue our banking example. We need a relation to describe information about

customers. The relation schema is

“Customer_schema = (customer_name, customer_street, customer_city)”

Figure1.5 Customer Relation

32 | P a g e

The above Figure 1.5shows a sample relation customer (Customer_schema). Note that we

have omitted the customer-id attribute that we used in previous diagrams, because now we

want to have smaller relation schemas in our running example of a bank database.

We assume that the customer name uniquely identifies a customer-obviously this may not be

true in the real world, but the assumption makes our examples much easier to read. In a real-

world database, the customer-id (which could be a social-security number or an identifier

generated by the bank) would serve to uniquely identify customers. We also need a relation

to describe the association between customers and accounts. The relation schema to describe

this association is

“Depositor_schema = (customer_name, account_number)”

Fig 1.6 shows a sample relation depositor (Depositor-schema).

Figure1.6 Depositor Relation

It would appear that, for our banking example, we could have just one relation schema, rather

than several. That is, it may be easier for a user to think in terms of one relation schema,

rather than in terms of several. Suppose that we used only one relation for our example, with

schema.

“(Branch_name, branch_city, assets, customer_name, customer_street

Customer_city, account_number, balance)”

Observe that, if a customer has several accounts, we must list her address once for each

account. That is, we must repeat certain information several times. This repetition is wasteful

and is avoided by the use of several relations, as in our example' In addition, if a branch has no

accounts (a newly created branch, say, that has no customers yet), we cannot construct a

33 | P a g e

complete tuple on the preceding single relation, because no data concerning customer and

account are available yet. To represent incomplete tuples, we must use null values that signify

that the value is unknown or does not exist. Thus, in our example, the values for

customer_name, customer_street, and so on must be null. By using several relations, we can

represent the branch information for a bank with no customers without using null values. We

simply use a tuple on Branch_schema to represent the information about the branch, and

create tuples on the other schemas only when the appropriate information becomes available.

Schema Diagram

A database schema, along with primary key and foreign key dependencies, can be depicted

pictorially by schema diagrams. Figure 1.7 shows the schema diagram for our banking

enterprise. Each relation appears as a box, with the attributes listed inside it and the relation

name above it. If there are primary key attributes, a horizontal line crosses the box, with the

primary key attributes listed above the line in gray. Foreign key dependencies appear as

arrows from the foreign key attributes of the referencing relation to the primary key of the

referenced relation. Many database systems provide design tools with a graphical user

interface for creating schema diagrams.

Figure1.6 Schema Diagram of a Banking Enterprise

34 | P a g e

(iii). Keys of Relational Database (6 Marks)

We must have a way to specify how tuples within a given relation are distinguished.

This is expressed in terms of their attributes. That is, the values of the attribute values of a

tuple must be such that they can uniquely identify the tuple. In other words, no two tuples in a

relation are allowed to have exactly the same value for all attributes.

Keys: K R

K is a super key of R if values for K are sufficient to identify a unique tuple of each possible

relation r(R). By “possible r” we mean a relation r that could exist in the enterprise we are

modeling.

Example: {customer_name, customer_street} and {customer_name}

are both super keys of Customer, if no two customers can possibly have the same name. In

real life, an attribute such as customer_id would be used instead of customer_name to

uniquely identify customers, but we omit it to keep our examples small, and instead assume

customer names are unique.

Types of keys:

1) K is a candidate key if K is minimal

 Example: {customer_name} is a candidate key for Customer, since it is a super key and

no subset of it is a super key.

2) Primary key: a candidate key chosen as the principal means of identifying tuples within a

relation should choose an attribute whose value never, or very rarely, changes.

E.g. email address is unique, but may change.

3) Foreign Keys(2 MARKS NOV 2012),APRIL 2014.

A relation schema may have an attribute that corresponds to the primary key of

another relation. The attribute is called a foreign key.

E.g. customer_name and account_number attributes of depositor are foreign keys to

customer and account respectively.

Only values occurring in the primary key attribute of the referenced relation may occur

in the foreign key attribute of the referencing relation.

(iv) Query Languages (4 marks)

A query language is a language in which a user requests information from the

database. These languages are usually on a level higher than that of a standard programming

35 | P a g e

Language. Query languages can be categorized as either procedural or nonprocedural. In a

procedural language, the user instructs the system to perform a sequence of operations on the

database to compute the desired result. In a nonprocedural language, the user describes the

desired information without giving a specific procedure for obtaining that information.

Most commercial relational database systems offer a query language that includes

elements of both the procedural and the nonprocedural approaches. There are a number of

"pure" query languages: The relational algebra is procedural, whereas the tuple relational

calculus and domain relational calculus are nonprocedural. These query languages are terse

and formal, lacking the "syntactic sugar" of commercial languages, but they illustrate the

fundamental techniques for extracting data from the database.

Relational algebra consists of a set of operations that take one or two relations aJ input

and produce a new relation as their result. The fundamental operations in the relational

algebra are select, project, union, set difference, Cartesian product, and rename. In addition to

the fundamental operations, there are several other operations-namely, set intersection,

natural join, division, and assignment. However, a complete data manipulation

language includes not only a query language, but also a language for database modification.

Such languages include commands to insert and delete tuples, as well as commands to modify

parts of existing tuples.

7. Describe Relational Algebra and its operations(11 Marks).

 The relational algebra is a procedural query language. It consists of a set of operations

that take one or two relations as input and produce a new relation as their result.

The operations can be divided into,

 Basic operations: Select, Project, Union, rename, set difference and Cartesian product

 Additional operations: Set intersections, natural join, division and assignment.

 Extended operations: Aggregate operations and outer join

The fundamental operations are :

1. Select

2. Project

3. Union

4. Set difference

5. Cartesian product and

6. Rename.

Example: Consider simple Relation r

36 | P a g e

A B C D

A a 1 7

A b 5 7

B b 12 3

B b 23 10

A=B ^ D > 5 (r)

A B C D

A a 1 7

B b 23 10

SELECTION OPERATION

 Notation:p(r)

 p is called the selection predicate

 Defined as:

p(r) = {t | t Î r and p(t)}

 Where p is a formula in propositional calculus consisting of terms

connected by : (and), (or), (not)

 Each term is one of:

<Attribute> op <attribute> or <constant>

 where op is one of:

 Select: It selects tuples that satisfy a given predicate, To denote selection. (Sigma) is

used.

Syntax

condition (table name)
Example

sal>1000(emp)----It selects tuples whose employee sal is > 1000

PROJECT OPERATION

 It selects attributes from the relation.

 Symbol for project

Syntax:

37 | P a g e

Example:

 Combining Select & Project Operation

 Selects tuples where sal>1000 & from them only eid and salary attributes are selected.

UNION OPERATION

Consider a query to find the names of all bank customers who have either an account

or a loan or both. Note that the customer relation does not contain the information, since a

customer does not need to have either an account or a loan at the bank.

1. We know how to find the names of all customers with a loan in the bank:

 Πcustomer-name (borrower)

2. We also know how to find the names of all customers with an account in the bank:

 Πcustomer-name (depositor)

The binary operation union, denoted, as in set theory, by U. So the expression needed

is Πcustomer-name (borrower) U Πcustomer-name (depositor). Therefore, for a

union operation r U s to be valid, we require that two conditions hold:

1. The relations r and s must be of the same arity. That is, they must have the same number of

attributes.

2. The domains of the ith attribute of r and the ith attribute of s must be the same, for all i.

THE SET DIFFERENCE OPERATION:

1. The set-difference operation, denoted by −, allows us to find tuples that are in one

relation but are not in another.

2. The expression(r − s) produces a relation containing those tuples in r but not in s.

∏
<Attribute list>

(Table name)

eid,sal
(Employee) ∏

eid,sal

(employee)
∏ Sal>1000 ()

38 | P a g e

3. We can find all customers of the bank who have an account but not a loan by

writing Πcustomer-name (depositor) − Πcustomer-name (borrower)

THE CARTESIAN-PRODUCT OPERATION

1. The Cartesian-product operation, denoted by a cross (×), allows us to combine

information from any two relations.

2. We write the Cartesian product of relations r1 and r2 as (r1 × r2).

3. Suppose that we want to find the names of all customers who have a loan at the

Perryridge branch. We need the information in both the loan relation and the

borrower relation to do so.

4. If we write σ branch-name =“Perryridge” (borrower × loan). However, the customer-

name column may contain customers

5. Finally, since we want only customer-name, we do a projection

Πcustomer-name(σborrower.loan-number=loan.loan-number(σbranch-name

=“Perryridge” (borrower × loan)))

THE RENAME OPERATION:

1. Unlike relations in the database, the results of relational-algebra expressions do

not have a name that we can use to refer to them.

2. It is useful to be able to give them names; the rename operator, denoted by the

lowercase Greek letter rho (ρ).

Consider the following example query:

Find the names of all customers who live on the same street and in the same city as Smith.”

We can obtain Smith’s street and city by writing

Πcustomer-street, customer-city (σcustomer-name = “Smith” (customer))

However, in order to find other customers with this street and city, we must reference the

customer relation a second time. In the following query, we use the rename operation on the

preceding expression to give its result the name smith-addr, and to rename its attributes to

street and city, instead of customer-street and customer-city:

Πcustomer.customer-name

(σcustomer.customer-street=smith-addr.street ∧

Customer.customer-city=smith-addr.city

(customer × ρsmith-addr (street, city)

(Πcustomer-street, customer-city (σcustomer-name = “Smith” (customer)))))

39 | P a g e

ADDITIONAL OPERATIONS:

 The fundamental operations of the relational algebra are sufficient to express any

relational-algebra query. However, if we restrict ourselves to just the fundamental

operations, certain common queries are lengthy to express. We define additional operations

that do not add any power to the algebra, but simplify common queries.

The various additional operations are:

i) The Set-Intersection Operation

ii) The Natural-Join Operation

iii) The Division Operation

iv) The Assignment Operation

THE SET-INTERSECTION OPERATION

1. The first additional-relational algebra operation that we shall define is set intersection (∩).

2. Suppose that we wish to find all customers who have both a loan and an account. Using

set intersection, we can write:

 Πcustomer-name (borrower) ∩ Πcustomer-name (depositor)

THE NATURAL-JOIN OPERATION

1. It is often desirable to simplify certain queries that require a Cartesian product.

2. Usually, a query that involves a Cartesian product includes a selection operation on the

result of the Cartesian product.

Consider the query “Find the names of all customers who have a loan at the bank, along with

the loan number and the loan amount”

 Πcustomer-name, loan. loan-number, amount (σborrower .loan-number =loan.loan-number

(borrower× loan))

The natural join is a binary operation that allows us to combine certain selections and

Cartesian product into one operation.

THE DIVISION OPERATION:

The division operation, denoted by ÷, is suited to queries that include the phrase” for all.”

Suppose that we wish to find all customers who have an account at all the branches located in

Brooklyn.

40 | P a g e

Step 1:

We can obtain all branches in Brooklyn by the expression

r1 = Πbranch-name (σbranch-city =“Brooklyn” (branch))

Step 2:

We can find all (customer-name, branch-name) pairs for which the customer has an account

at a branch by writing

r2 = Πcustomer-name, branch-name (depositor account)

Step 3:

Now, we need to find a customer who appears in r2 with every branch name in r1.operation

that provides exactly those customers is divide operation. We formulate the query by writing

 Πcustomer-name, branch-name (depositor account)

÷ Πbranch-name (σbranch-city =“Brooklyn” (branch))

THE ASSIGNMENT OPERATION:

1. It is convenient at times to write a relational-algebra expression by assigning parts of it to

temporary relation variables.

2. The assignment operation, denoted by ←, works like assignment in a programming

language.

To illustrate this operation, consider the definition of division

 temp1 ← ΠR−S (r)

temp2 ← ΠR−S ((temp1 × s) − ΠR−S, S(r))

Result = temp1 − temp2

The evaluation of an assignment does not result in any relation being displayed to the user.

Rather, the result of the expression to the right of the ← is assigned to the relation variable on

the left of the←. This relation variable may be used in subsequent expressions.

Thus various relational algebra operations are explained.

8. Explain in detail about SQL with its structure and example(This question was asked

with some selective queries with example)(11 marks)

SQL

History

 IBM Sequel language developed as part of System R project at the IBM San Jose

Research Laboratory

 Renamed Structured Query Language (SQL)

41 | P a g e

 ANSI and ISO standard SQL:

o SQL86

o SQL89

o SQL92

o SQL: 1999 (language name became Y2K compliant!)

o SQL:2003

 Commercial systems offer most, if not all, SQL92 features, plus varying feature sets

from later standards and special proprietary features.

o Not all examples here may work on your particular system.

SQL is nothing but a set of commands/statements and are categorized into following five

groups viz., DQL: Data Query Language, DML: Data Manipulation Language, DDL: Data

Definition Language, TCL: Transaction Control Language, DCL: Data Control Language.

DQL: SELECT

DML: DELETE, INSERT, UPDATE

DDL: CREATE, DROP, TRUNCATE, ALTER

TCL: COMMIT, ROLLBACK, SAVEPOINT

DCL: GRANT, REVOKE

Data Definition Language: Allows the specification of not only a set of relations but

also information about each relation, including

 The schema for each relation.

 The domain of values associated with each attribute.

 Integrity constraints

 The set of indices to be maintained for each relations.

 Security and authorization information for each relation.

 The physical storage structure of each relation on disk.

Select

42 | P a g e

The SELECT statement as the name says is used to extract data from Oracle Database. The

syntax for the simplest SELECT statement is as follows.

SELECT column_name1, column_name2, …

FROM table_name1;

Example:

SELECT * FROM emp;

This command will display all the fields of the table emp and all of the records.

Example:

SELECT ename, sal FROM emp WHERE sal > 2000;

The result of this statement will be only two columns of emp table and only those records

where salary is greater than 2000.

Example:

SELECT ename, salary

FROM emp

WHERE sal > 2000

ORDER BY ename;

The output of this statement will be exactly the same as the one above except that the output

will be sorted based on ename column.

SQL Operators

Figure - SQL Operators: Comparison, Arithmetic, Logical & Other.

43 | P a g e

Example:

SELECT ename, sal, sal + sal*5/100 “Next Year Sal”

FROM emp;

Logical Operators and the operators in the Other category can be best understood by looking

at their respective real world examples.

Example:

SELECT sal

FROM emp

WHERE deptno = 30 AND sal > 2000;

The output of the query will be only one column i.e. sal and only those records will be

displayed where department number is 30 and the salary is greater than 2000. So when you

use AND operator it means both conditions needs to satisfy for the record to appear in the

output but in case of OR, either first condition needs to be true or the second one e.g.

SELECT sal

FROM emp

WHERE deptno = 30 OR sal > 2000;

Example:

SELECT *

FROM emp

WHERE job IN ('CLERK','ANALYST');

The output of the query will be all the columns of emp table but only those records where job

column contains either “CLERK” or “ANALYST”. You can also use IN operator with as follows.

SELECT *

FROM emp

WHERE sal IN (SELECT sal

FROM emp

44 | P a g e

WHERE deptno = 30);

By having NOT before IN can complete invert the results like in the following example. Such

types of queries fall under the category called “Sub-Queries” which we will discuss in the

article ahead in this chapter. There is a special technique to interpret them.

SELECT *

FROM emp

WHERE sal NOT IN (SELECT sal

FROM emp

WHERE deptno = 30);

Example:

SELECT *

FROM emp

WHERE sal BETWEEN 2000 AND 3000;

Only those records will be displayed where the salary is between 2000 and 3000 including

both 2000 and 3000.

Example:

SELECT ename, deptno

FROM dept

WHERE EXISTS (SELECT *

FROM emp

WHERE dept.deptno = emp.deptno);

TRUE if a sub-query returns at least one row. In other words the output will be two columns

from dept table, all the records only if the query after EXISTS results in at least one record.

Example:

SELECT sal

FROM emp

45 | P a g e

WHERE ename LIKE 'SM%';

The output will be only those salaries from emp (employee) table where ename (employee

name) begins with “SM”. Another variation of above query is as follows.

ename LIKE 'SMITH_'

The output will be only those records where ename begins with “SMITH” and there should not

be more than one character after it.

Example:

SELECT ename, deptno

FROM emp

WHERE comm IS NULL;

The output will be ename and deptno but only those records where comm field has NULL

value. NULL is a special value and just keep in mind that its not Zero. It can be visualized as

empty field occupying zero byte

Functions

46 | P a g e

Single Row Functions:

Single Row functions are further subdivided into five categories viz., Character, Data, Numeric,

Conversion & other functions. First we will start with Character Functions or more precisely

“Single Row Character Functions.”

Character Functions

Following are the functions that fall under this category.

CHR

LTRIM

INSTR

ASCII

RTRIM

INSTRB

CONCAT

TRIM

LENGTH

INITCAP

REPLACE

LENGTHB

LOWER

SOUNDEX

UPPER

SUBSTR

LPAD

SUBSTRB

RPAD

Example:

SELECT CHR(67)||CHR(65)||CHR(84) "Pet" FROM DUAL;

Output:

Pet

47 | P a g e

CAT

Example:

SELECT ASCII('Q') FROM DUAL;

Output:

ASCII('Q')

81

Example:

SELECT CONCAT(ename, ' is a good boy') "Result"

FROM emp

WHERE empno = 7900;

Output:

Result

JAMES is a good boy

Example:

SELECT INITCAP('the king') "Capitals" FROM DUAL;

Output:

Capitals

The King

Example:

SELECT LOWER('THE KING') "Lowercase" FROM DUAL;

Output:

Lowercase

the king

Similarly we can use the UPPER function.

48 | P a g e

Example:

SELECT LPAD('Page 1',15,'*+') "LPAD example" FROM DUAL;

Output:

LPAD example

++*+*+*Page 1

Similarly we can use RPAD.

Example:

SELECT LTRIM('121SPIDERMAN','12') "Result" FROM DUAL;

Output:

Result

SPIDERMAN

Similarly we can use RTRIM.

Example:

SELECT TRIM (0 FROM 001234567000) Result" FROM DUAL;

Output:

Result

1234567

SELECT TRIM (LEADING 0 FROM 001234567000) Result" FROM DUAL;

Output:

Result

1234567000

Similarly we can replace LEADING with TRAILING to omit trailing zeros in

001234567000 and the output will then be 001234567.

Example:

SELECT REPLACE('KING KONG','KI','HO') Result" FROM DUAL;

Output:

Changes

HONG KONG

Example:

49 | P a g e

SELECT ename FROM emp

WHERE SOUNDEX(ename) = SOUNDEX('SMYTHE');

Output:

ENAME

SMITH

This function allows you to compare words that are spelled differently, but sound alike in

English. You must have noticed that if you do a search in google (www.google.com) using

wrong spelling e.g. I made a wrong spelled word “Neus” search on google and it came up

with, “Did you mean News?”. That is basically the beauty of this function.

Figure 7: Google’s implementation of SOUNDEX function. __

Example:

SELECT SUBSTR('SPIDERMAN',7,3) "Result"

FROM DUAL;

Output:

Result

MAN

Similarly we can use SUBSTRB; for a single-byte database character set, SUBSTRB is

equivalent to SUBSTR. Floating-point numbers passed as arguments to SUBSTRB are

automatically converted to integers. Assume a double-byte database character set:

50 | P a g e

SELECT SUBSTRB(' SPIDERMAN',7,4.3) "Result" FROM DUAL;

Output:

Result

DE

Example:

SELECT INSTR('CORPORATE FLOOR','OR', 3, 2) "Instring" FROM DUAL;

Output:

Result

14

Similarly we can use INSTRB; for a single-byte database character set, INSTRB is equivalent to

INSTR. Lets suppose a double-byte database character set.

SELECT INSTRB('CORPORATE FLOOR','OR',5,2) "Result" FROM DUAL;

Output:

Result

27

Example:

SELECT LENGTH('SPIDERMAN') "Result"FROM DUAL;

Output:

Result

9

Similarly we can use LENGTHB; for a single-byte database character set, LENGTHB is

equivalent to LENGTH. Lets suppose a double-byte database character set.

SELECT LENGTHB ('SPIDERMAN') "Result"FROM DUAL;

Output:

Result

14

51 | P a g e

DATE FUNCTIONS:

Following functions fall under this category.

ADD_MONTHS

MONTHS_BETWEEN

LAST_DAY

ROUND

SYSDATE

TRUNC

Example:

SELECT ADD_MONTHS(hiredate,1)FROM emp WHERE ename = 'SMITH';

Example:

SELECT SYSDATE,LAST_DAY(SYSDATE) "Last",LAST_DAY(SYSDATE) - SYSDATE "Days Left"

FROM DUAL;

Output:

SYSDATE Last Days Left

--------- --------- ----------

23-OCT-97 31-OCT-97 8

Example:

SELECT MONTHS_BETWEEN(SYSDATE, hiredate) “Months of Service"

FROM DUAL;

Example:

SELECT ROUND (TO_DATE ('27-OCT-92'),'YEAR')

"New Year" FROM DUAL;

Output:

New Year

01-JAN-93

Example:

SELECT TRUNC(TO_DATE('27-OCT-92','DD-MON-YY'), 'YEAR')

"New Year" FROM DUAL;

52 | P a g e

Output:

New Year

01-JAN-92

NUMERIC FUNCTIONS:

The following functions fall under this category.

ABS

ROUND

SIGN

TRUNC

CEIL

SQRT

FLOOR

MOD

Example:

SELECT ABS(-25) "Result"

FROM DUAL;

Output:

Result

25

Example:

SELECT SIGN(-15) "Result"

FROM DUAL;

Output:

Result

-1

Example:

SELECT CEIL(25.7) "Result"

FROM DUAL;

Output:

Result

53 | P a g e

26

Example:

SELECT FLOOR(25.7) "Result" FROM DUAL;

Output:

Result

25

Example:

SELECT ROUND(25.29,1) "Round" FROM DUAL;

Output:

Round

25.3

SELECT ROUND(25.29,-1) "Round" FROM DUAL;

Output:

Round

30

Example:

SELECT TRUNC(25.29,1) "Truncate" FROM DUAL;

Output:

Truncate

25.2

Example:

SELECT TRUNC(25.29,-1) "Truncate" FROM DUAL;

Output:

Truncate

20

-1 will truncate (make zero) first digit left of the decimal point of 25.29

Example:

54 | P a g e

SELECT MOD(11,4) "Modulus"

FROM DUAL;

Output:

Modulus

3

Example:

SELECT SQRT(25) "Square root"

FROM DUAL;

Output:

Square root

5

CONVERSION FUNCTIONS:

The following functions fall under this category

TO_CHAR

TO_DATE

TO_NUMBER

Example:

SELECT TO_CHAR(HIREDATE, 'Month DD, YYYY') "Result"

FROM emp

WHERE ename = 'BLAKE';

Output:

Result

May 01, 1981

Example:

SELECT TO_CHAR(-10000,'L99G999D99MI') "Result"

FROM DUAL;

Output:

Result

$10,000.00-

55 | P a g e

Example:

SELECT TO_DATE('January 15, 1989, 11:00 A.M.',

'Month dd, YYYY, HH:MI A.M.',

'NLS_DATE_LANGUAGE = American')

FROM DUAL;

Example:

SELECT TO_NUMBER('$10,000.00-', 'L99G999D99MI') "Result"

FROM DUAL;

Output:

Result

-1000

56 | P a g e

OTHER SINGLE ROW FUNCTIONS:

The following functions fall under this category.

NVL

VSIZE

Example:

SELECT ename, NVL(TO_CHAR(COMM), 'NOT APPLICABLE') "COMMISSION" FROM emp

WHERE deptno = 30;

Output:

ENAME COMMISSION

---------- -------------------------

ALLEN 300

WARD 500

MARTIN 1400

BLAKE NOT APPLICABLE

TURNER 0

JAMES NOT APPLICABLE

Example:

SELECT ename, VSIZE (ename) "BYTES"

FROM emp

WHERE deptno = 10;

Output:

ENAME BYTES

---------- ----------

CLARK 5

KING 4

MILLER 6

57 | P a g e

GROUP FUNCTIONS:

A group function as the name says, gets implemented on more than one record within a

column. They can be better understood by looking at their real world examples. There are five

very important group functions.

AVG

COUNT

MAX

MIN

SUM

Example:

SELECT AVG(sal) "Average" FROM emp;

Output:

Average

2077.21429

Example:

SELECT COUNT(*) "Total"FROM emp;

Output:

Total

18

Total number of records will be returned with a table.

Example:

SELECT MAX(sal) "Maximum" FROM emp;

Output:

Maximum

5000

On the same line we can find out minimum value using the MIN group function.

Example:

SELECT SUM(sal) "Total"FROM emp;

Output:

Total

29081

58 | P a g e

9. Explain in detail about Basic Structure of SQL.(11 marks)

SQL keywords : SQL keywords fall into several groups.

(i). Data retrieval: The most frequently used operation in transactional databases is the data

retrieval operation. When restricted to data retrieval commands, SQL acts as a declarative

language.

 SELECT is used to retrieve zero or more rows from one or more tables in a database. In

most applications, SELECT is the most commonly used Data Manipulation Language

command. In specifying a SELECT query, the user specifies a description of the desired

result set, but they do not specify what physical operations must be executed to

produce that result set. Translating the query into an efficient query plan is left to the

database system, more specifically to the query optimizer.

o Commonly available keywords related to SELECT include:

 FROM is used to indicate from which tables the data is to be taken, as

well as how the tables JOIN to each other.

 WHERE is used to identify which rows to be retrieved, or applied to

GROUP BY. WHERE is evaluated before the GROUP BY.

 GROUP BY is used to combine rows with related values into elements of

a smaller set of rows.

 HAVING is used to identify which of the "combined rows" (combined

rows are produced when the query has a GROUP BY keyword or when

the SELECT part contains aggregates), are to be retrieved. HAVING acts

much like a WHERE, but it operates on the results of the GROUP BY and

hence can use aggregate functions.

 ORDER BY is used to identify which columns are used to sort the

resulting data.

Example 1:

 SELECT * FROM books WHERE price > 100.00 and price < 150.00 ORDER BY title

This is an example that could be used to get a list of expensive books. It retrieves the records

from the books table that have a price field which is greater than 100.00. The result is sorted

alphabetically by book title. The asterisk (*) means to show all columns of the books table.

Alternatively, specific columns could be named.

http://en.wikipedia.org/wiki/Declarative_programming
http://en.wikipedia.org/wiki/Declarative_programming
http://en.wikipedia.org/wiki/Select_%28SQL%29
http://en.wikipedia.org/wiki/Data_Manipulation_Language
http://en.wikipedia.org/wiki/Query_plan
http://en.wikipedia.org/wiki/Query_optimizer
http://en.wikipedia.org/wiki/Join_%28SQL%29
http://en.wikipedia.org/wiki/Where_%28SQL%29
http://en.wikipedia.org/wiki/GROUP_BY_%28SQL%29
http://en.wikipedia.org/wiki/Having_%28SQL%29
http://en.wikipedia.org/wiki/Order_by_%28SQL%29

59 | P a g e

 Example 2:

 SELECT books.title, count(*) AS Authors FROM books JOIN book_authors ON

 books.book_number = book_authors.book_number GROUP BY books.title

Example 2 shows both the use of multiple tables in a join, and aggregation (grouping). This

example shows how many authors there are per book. Example output may resemble:

 Title Authors

 ---------------------- -------

 SQL Examples and Guide 3

 The Joy of SQL 1

 How to use Wikipedia 2

 Pitfalls of SQL 1

 How SQL Saved my Dog 1

Data manipulation: First there are the standard Data Manipulation Language (DML)

elements. DML is the subset of the language used to add, update and delete data.

 INSERT is used to add zero or more rows (formally tuples) to an existing table.

 UPDATE is used to modify the values of a set of existing table rows.

 MERGE is used to combine the data of multiple tables. It is something of a combination

of the INSERT and UPDATE elements. It is defined in the SQL:2003 standard; prior to

that, some databases provided similar functionality via different syntax, sometimes

called an "update".

 TRUNCATE deletes all data from a table (non-standard, but common SQL command).

 DELETE removes zero or more existing rows from a table.

Example:

INSERT INTO my_table (field1, field2, field3) VALUES ('test', 'N', NULL);

UPDATE my_table SET field1 = 'updated value' WHERE field2 = 'N';

DELETE FROM my_table WHERE field2 = 'N';

Data transaction: Transaction, if available, can be used to wrap around the DML operations.

 BEGIN WORK (or START TRANSACTION, depending on SQL dialect) can be used to

mark the start of a database transaction, which either completes completely or not at

all.

http://en.wikipedia.org/wiki/Join_%28SQL%29
http://en.wikipedia.org/wiki/Data_Manipulation_Language
http://en.wikipedia.org/wiki/Data_Manipulation_Language
http://en.wikipedia.org/wiki/Insert_%28SQL%29
http://en.wikipedia.org/wiki/Tuple
http://en.wikipedia.org/wiki/Update_%28SQL%29
http://en.wikipedia.org/wiki/Merge_%28SQL%29
http://en.wikipedia.org/wiki/Truncate_%28SQL%29
http://en.wikipedia.org/wiki/Delete_%28SQL%29
http://en.wikipedia.org/wiki/Begin_work_%28SQL%29
http://en.wikipedia.org/wiki/Start_transaction_%28SQL%29
http://en.wikipedia.org/wiki/Database_transaction

60 | P a g e

 COMMIT causes all data changes in a transaction to be made permanent.

 ROLLBACK causes all data changes since the last COMMIT or ROLLBACK to be

discarded, so that the state of the data is "rolled back" to the way it was prior to those

changes being requested.

COMMIT and ROLLBACK interact with areas such as transaction control and locking. Strictly,

both terminate any open transaction and release any locks held on data. In the absence of a

BEGIN WORK or similar statement, the semantics of SQL are implementation-dependent.

Example:

BEGIN WORK;

UPDATE inventory SET quantity = quantity - 3 WHERE item = 'pants';

COMMIT;

Data definition: The second group of keywords is the Data Definition Language (DDL). DDL

allows the user to define new tables and associated elements. Most commercial SQL databases

have proprietary extensions in their DDL, which allow control over nonstandard features of

the database system.

The most basic items of DDL are the CREATE and DROP commands.

 CREATE causes an object (a table, for example) to be created within the database.

 DROP causes an existing object within the database to be deleted, usually irretrievably.

Some database systems also have an ALTER command, which permits the user to modify an

existing object in various ways -- for example, adding a column to an existing table.

Example:

CREATE TABLE my_table (

my_field1 INT,

my_field2 VARCHAR (50),

my_field3 DATE NOT NULL,

PRIMARY KEY (my_field1, my_field2))

All DDL statements are auto commit so while dropping a table need to have close look at its

future needs.

http://en.wikipedia.org/wiki/Commit_%28SQL%29
http://en.wikipedia.org/wiki/Rollback_%28SQL%29
http://en.wikipedia.org/wiki/Data_Definition_Language
http://en.wikipedia.org/wiki/Create_%28SQL%29
http://en.wikipedia.org/wiki/Drop_%28SQL%29
http://en.wikipedia.org/wiki/Alter_%28SQL%29

61 | P a g e

Data control

The third group of SQL keywords is the Data Control Language (DCL). DCL handles the

authorization aspects of data and permits the user to control who has access to see or

manipulate data within the database.

Its two main keywords are:

 GRANT — authorizes one or more users to perform an operation or a set of operations

on an object.

 REVOKE — removes or restricts the capability of a user to perform an operation or a

set of operations.

 Example:

GRANT SELECT, UPDATE ON my_table TO some_user, another_user;

10. Explain in detail about SET operations in SQL(5 Marks)

The set operators in SQL are based on the same principles, except they don't have a

complement, and can determine the 'difference' between two sets. Here are the operators

which we apply to combine two queries:

 union - all elements in both queries are returned;

 intersect - elements common to both queries are returned;

 except - elements in the first query are returned excluding any that were returned by

the second query.

These are powerful ways of manipulating information, but take note: you can only apply them

if the results of the two queries (that are going to be combined) have the same format - that is,

the same number of columns, and identical column types! (Although many SQLs try to be

helpful by, for example, coercing one data type into another, an idea which is superficially

helpful and fraught with potential for errors). The general format of such queries is illustrated

by:

selectcolumns1fromtable1union select columns2 from table2

Different strokes:

Different vendor implementations of SQL have abused the SQL-92 standard in different ways.

For example, Oracle uses minus where SQL-92 uses except.

http://en.wikipedia.org/wiki/Data_Control_Language
http://en.wikipedia.org/wiki/Data_Control_Language

62 | P a g e

An outer join could be used (with modification for NULLs if these little monstrosities are

present) to achieve the same result as except. Similarly, an inner join (with select distinct)

can do what intersect does.

Set operators can be combined (as you would expect when playing around with sets) to

achieve results that simply cannot be obtained using a single set operator.

Note that there are some restrictions on using order by with set operators - order by may

only be used once, no matter how big the compound statement, and the select list must

contain the columns being used for the sort.

Pseudoset operators

Not content with implementing set operators, SQL database creators have also

introduced what are called "pseudoset operators". These operators don't fit conveniently into

set theory, because they allow multiple rows (redundancies) which are forbidden in true sets.

We use the pseudoset operator union all to combine the outputs of two queries (all that is

done is that the results of the second query are appended to the results of the first). Union all

does exactly what we required from a FULL OUTER JOIN.

11. Write Short Notes on Null Values(5 Marks)

SQL allows the use of null values to indicate absence of information about the value of

an attribute. We can use the special keyword null in a predicate to test for a null value.

Wherever a value can appear in SQL, in particular in place of a column value in some row.

The deviation from the relational model arises from the fact that the implementation of

this ad hoc concept in SQL involves the use of three-valued logic, under which the

comparison of NULL with itself does not yield true but instead yields the third truth value,

unknown; similarly the comparison NULL with something other than itself does not yield

false but instead yields unknown. It is because of this behavior in comparisons that NULL

is described as a mark rather than a value.

The relational model depends on the law of excluded middle under which anything

that is not true is false and anything that is not false is true; it also requires every tuple in a

relation body to have a value for every attribute of that relation. This particular deviation

is disputed by some if only because E.F. Codd himself eventually advocated the use of

special marks and a 4-valued logic, but this was based on his observation that there are

two distinct reasons why one might want to use a special mark in place of a value, which

led opponents of the use of such logics to discover more distinct reasons and at least as

http://en.wikipedia.org/wiki/Law_of_excluded_middle

63 | P a g e

many as 19 have been noted, which would require a 21-valued logic. SQL itself uses NULL

for several purposes other than to represent "value unknown". For example, the sum of

the empty set is NULL, meaning zero, the average of the empty set is NULL, meaning

undefined, and NULL appearing in the result of a LEFT JOIN can mean "no value because

there is no matching row in the right-hand operand".

12. Write Short Notes on Nested Sub Queries(6 Marks)

NESTED SUBQUERIES: SQL provides a mechanism for nesting sub queries. A subquery is a

select-from where expression that is nested within another query. A common use of sub

queries is to perform tests for set membership, make set comparisons, and determine set

cardinality.

Subqueries: Wouldn't it be nice if you could perform one query, temporarily store the

result(s), and then use this result as part of another query? You can, and the trickery used is

called a subquery. The basic idea is that instead of a 'static' condition, you can insert a query

as part of a where clause! An example is:

Select * from tablename where value> (insert select statement here);

Note that in the above query, the inner select statement must return just one value (for

example, an average). There are other restrictions - the subquery must be in parenthesis, and

it must be on the right side of the conditional operator (here, a greater than sign). You can use

such sub queries with =, >, <, >=, <= and <>, but not {to the best of my knowledge?} with

between.. And.

Multiple select sub queries can be combined (using logical operators) in the same statement,

but avoid complex queries if you possibly can!

Subqueries that return multiple values

In the above, we made sure that our subquery only returned a single value. Can you think of a

way you might use a subquery that returns a list of values? (Such a thing is possible)! Yes, you

need an operator that works on lists. An example of such an operator is in, which we've

encountered before. The query should look something like:

select*from tablename where value in (insert select statement here);

http://www.anaesthetist.com/mnm/sql/query.htm#logic#logic
http://www.anaesthetist.com/mnm/sql/query.htm#in#in

64 | P a g e

The assumption is that the nested select statement returns a list. The outer shell of the

statement can then use in to get cracking on the list, looking for a match of value within the

list! There is a surprisingly long list of operators that resemble in, and can be used in a similar

fashion. Here it is:

Operator What it does

not in
There is no match with any value retrieved by the nested select

statement.

in
We know how this works. Note that = any is a synonym for in

that you'll sometimes encounter!

> any

The value is greater than any value in the list produced by the

inner submit statement. This is a clumsy way of saying "Give me

the value if it's bigger than the smallest number retrieved"!

>= any

< any

<= any

Similar to >. Usage should be obvious.

> all

Compare this with > any - it should be clear that the condition

will only succeed if the value is bigger than the largest value in

the list returned by the inner select statement!

>= all

< all

<= all

If you understand > all, these should present no problem!

= all

You're not likely to use this one much. It implies that (to

succeed) all the values returned by the inner subquery are equal

to one another and the value being tested!

(It is even possible in some SQL implementations to retrieve a 'table' (multiple columns) using

the inner select statement, and then use in to simultaneously compare multiple values with

the rows of the table produced by this inner select. You'll probably never need to use

something like this. Several other tricks are possible, including the creation of virtual views by

using a subquery

Correlated Subqueries

Whew, we're nearly finished with the sub queries, but there is one more distinct flavour The

correlated subquery is a nested select statement that can (using trickery) refer to the outer

65 | P a g e

select statement containing it. By so doing, we can successively apply the inner select

statement to each line generated by the outer statement! The trick that we use is to create an

alias for the outer select statement, and then refer to this alias in the inner select statement,

thus constraining the inner select to dealing with the relevant row. For an example, we return

to our tedious drug table:

DrugDosing

Dosing DoseMg Frequency

D1 30 OD

D2 10 OD

D3 200 TDS

Let's say we wanted (for some obscure reason) all doses that are greater than average dose,

for each dosing frequency. [Meaningless, but it serves the purposes of illustration].

Select Dose Mg, Frequency from DrugDosing fred where DoseMg>(selectavg(DoseMg) from

DrugDosing where Frequency = fred. Frequency) ;

The sense of this statement should be clear - we use the outer select to choose a row (into

which we put DoseMg, and Frequency). We then check whether this row is a candidate (or

not) using the where statement. What does the where statement check? Well, it makes sure

that DoseMg is greater than a magic number. The magic number is the average dose for a

particular Frequency, the frequency associated with the current row. The only real trickery is

how we use the label fred to refer to the current line from within the inner select statement.

This label fred is called an alias. We'll learn a lot more about aliases later (Some will argue

that aliases are so important you should have encountered them long before, but we

disagree).

Correlated sub queries are not the only way of doing the above. Using a temporary view is

often more efficient, but it's worthwhile knowing both techniques.

13. Write Short Notes on SQL Views(6 Marks)(2 Marks)

View gives a particular user access to selected portions of a table. A view is however more

than this - it can limit the ability of a user to update parts of a table, and can even amalgamate

rows, or throw in additional columns derived from other columns. Even more complex

applications of views allow several tables to be combined into a single view!

66 | P a g e

How do we make a view?

Interestingly enough, you use a select statement to specify the view you wish to create. The

syntax is:

Create view nameofview as select here have details of select statement

A variant that you will probably use rather often is:

Create or replaceview nameofview as select here have details of select statement

(Otherwise you have to explicitly destroy a view - SQL won't simply overwrite a view without

the or replace instruction, but will instead give you an irritating error).

One cannot use an order by statement (or something else called a for update clause)

within a view. There is a whole lot of other convenient things you can do to views. Where you

include summary statistics (eg count, sum, etc) in a view it is termed an aggregate view.

Likewise, using distinct, you can have a view on the possible values of a column or grouping

of columns.

You can even create a view that is derived from several tables (A multi-table view). This

is extremely sneaky, as you can largely avoid complex join statements in code which pulls

data out of several tables.

How do we limit access to a view?

This is implicit in the way we sneakily use a select statement - to limit access to certain

columns, for example, we just select the column-names we want access to, and ignore the

rest! - if you insert a row, then SQL doesn't know what to put into the column entry that's not

represented in the view, so it will insert either NULL, or the default value for that column.

(Likewise, with delete, the entire row will be deleted, even the column entry that is invisible).

It is also obvious how we limit access to certain rows - we use a where clause that only

includes the rows we want in the view. Note that (depending on your selection criterion) it is

possible to insert a row into a view (and thus the underlying database) and then not be able to

see this row in the view! With (in)appropriate selection criteria for the view, one can also

alter the properties of rows visible in the view so that they now become hidden!

More draconic constraints are possible. The option with read only prevents any

modifications to the view (or the underlying database); while with check option prevents

67 | P a g e

you from creating rows in the view that cannot be selected (seen) in the view itself. If you use

the "with check option", then you should follow this with a name, otherwise SQL will create an

arbitrary and quite meaningless name for the constraint that will only confuse you when an

error occurs!

How do we remove a view?

More things we can do with views

One trick is to create a "virtual view" and then use this as a "table" which you can update.

Instead of specifying a table name, you specify (in parenthesis) the select statement that

defines the "virtual view", and all actions are performed on this temporary table! This is

particularly useful where you don't have the system authority to create a view, yet need the

power of a view.

14. Explain in detail Unified Modeling Language(5 Marks)APRIL 2014.(2 Marks)NOV 2014

UML is officially defined at the Object Management Group (OMG) by the UML metamodel, a

Meta-Object Facility metamodel (MOF). Like other MOF-based specifications, the UML

metamodel and UML models may be serialized in XML. UML was designed to specify,

visualize, construct, and document software-intensive systems.

UML is not restricted to modeling software. UML is also used for business process modeling,

systems engineering modeling, and representing organizational structures. The Systems

Modeling Language (SysML) is a Domain-Specific Modeling language for systems engineering

that is defined as a UML 2.0 profile.

UML has been a catalyst for the evolution of model-driven technologies, which include

model-driven development (MDD), model-driven engineering (MDE), and model-driven

architecture (MDA). By establishing an industry consensus on a graphic notation to represent

common concepts like classes, components, generalization, aggregation, and behaviors, UML

has allowed software developers to concentrate more on design and architecture.

UML models may be automatically transformed to other representations (e.g. Java) by

means of QVT-like transformation languages, supported by the OMG.

UML is extensible, offering the following mechanisms for customization: profiles and

stereotype. The semantics of extension by profiles have been improved with the UML 2.0 major

revision.

http://en.wikipedia.org/wiki/Object_Management_Group
http://en.wikipedia.org/w/index.php?title=UML_metamodel&action=edit
http://en.wikipedia.org/wiki/Meta-Object_Facility
http://en.wikipedia.org/wiki/XML_Metadata_Interchange
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Business_process_modeling
http://en.wikipedia.org/wiki/Systems_engineering
http://en.wikipedia.org/wiki/Organizational_structure
http://en.wikipedia.org/wiki/Systems_Modeling_Language
http://en.wikipedia.org/wiki/Systems_Modeling_Language
http://en.wikipedia.org/wiki/Domain-Specific_Modeling
http://en.wikipedia.org/wiki/Model-driven_engineering
http://en.wikipedia.org/wiki/Model-driven_architecture
http://en.wikipedia.org/wiki/Model-driven_architecture
http://en.wikipedia.org/wiki/QVT
http://en.wikipedia.org/wiki/Object_Management_Group
http://en.wikipedia.org/wiki/Extensible_programming
http://en.wikipedia.org/wiki/Profile_%28UML%29
http://en.wikipedia.org/wiki/Stereotype_%28computing%29
http://en.wikipedia.org/wiki/Semantics

68 | P a g e

15. Explain in detail about the various Data Models(11 Marks)

Data Models is a collection of tools for describing

 Data

 Data relationships

 Data semantics

 Data constraints

Entity Relationship Model: E-R model of real world 5 Entities (objects) E.g. customers,

accounts, bank branch 5 Relationships between entities E.g. Account A-101 is held by

customer Johnson Relationship set depositor associates customers with accounts s Widely

used for database design 5 Database design in E-R model usually converted to design in the

relational model (coming up next) which is used for storage and processing

Relational Model Attributes

Example of tabular data in the relational model

customer- customer- account- customer- Customer-id street city number

name Johnson 192-83-7465

Alma A-101 Palo Alto

Smith 019-28-3746 North A-215 Rye

Data Definition Language (DDL)

It’s a Specification notation for defining the database schema

E.g. create table account (account-number char (10), balance integer) s DDL compiler

generates a set of tables stored in a data dictionary s Data dictionary contains metadata (i.e.,

data about data) database schema, Data storage and definition language in which the storage

structure and access methods used by the database system are specified Usually an extension

of the data definition language

Data Manipulation Language (DML)

It’s a Language for accessing and manipulating the data organized by the appropriate data

model. DML also known as query language is two classes of languages

 Procedural – user specifies what data is required and how to get those data

69 | P a g e

 Nonprocedural – user specifies what data is required without specifying how to get

those data s SQL is the most widely used query language

Entity-relationship (ER)

Definition: An entity-relationship (ER) diagram is a specialized graphic that illustrates the

interrelationships between entities in a database. ER diagrams often use symbols to represent

three different types of information. Boxes are commonly used to represent entities.

Diamonds are normally used to represent relationships and ovals are used to represent

attributes.

Also Known As: ER Diagram, E-R Diagram, entity-relationship model

Examples: Consider the example of a database that contains information on the residents of a

city. The ER diagram shown in the image above contains two entities -- people and cities.

There is a single "Lives In" relationship. In our example, due to space constraints, there is only

one attribute associated with each entity. People have names and cities have populations. In a

real-world example, each one of these would likely have many different attributes.

Entity Sets in a database can be modeled as:

 A collection of entities,

 Relationship among entities.

an entity is an object that exists and is distinguishable from other objects. Example: specific

person, company, event, plant s Entities have attributes. Example: people have names and

addresses is an entity set is a set of entities of the same type that share the same properties.

Example: set of all persons, companies, trees, holidays

Entity Sets customer and loan customer-id customer- customer- customer- loan- amount

name street city number

70 | P a g e

Attributes

An entity is represented by a set of attributes, that is descriptive properties possessed by all

members of an entity set. Example: customer = (customer-id, customer-name, customer-

street, customer-city) loan = (loan-number, amount) s Domain – the set of permitted values

for each attribute is Attribute types:

 Simple and composite attributes.

 Single-valued and multi-valued attributes E.g. multivalued attribute: phone-numbers

 Derived attributes Can be computed from other attributes E.g. age, given date of birth

Relationship Sets

A relationship is an association among several entities Example: Hayes depositor A-102

customer entity relationship set account entity s A relationship set is a mathematical 2

entities, each taken from entity sets {(e1, e2, … en) | e1 relation among n En} where (e1, e2,

…, en) is a relationship. An attribute can also be property of a relationship set. s For instance,

the depositor relationship set between entity sets customer and account may have the

attribute access-date Degree of a Relationship Set Refers to number of entity sets that

participate in a relationship set. s Relationship sets that involve two entity sets are binary (or

degree two). Generally, most relationship sets in a database system are binary. Relationship

sets may involve more than two entity sets. E.g. Suppose employees of a bank may have jobs

(responsibilities) at multiple branches, with different jobs at different branches. Then there is

a ternary relationship set between entity sets employee, job and branch Relationships

between more than two entity sets are rare. Most relationships are binary.

Mapping Cardinalities (2 MARKS NOV 2012)

It Express the number of entities to which another entity can be associated via a relationship

set. Most useful in describing binary relationship sets. For a binary relationship set the

mapping cardinality must be one of the following types:

 One to one

 One to many

 Many to one

 Many to many

71 | P a g e

Mapping Cardinalities One to one One to many Note: Some elements in A and B may not be

mapped to any elements in the other Mapping Cardinalities Many to one Many to many Note:

Some elements in A and B may not be mapped to any elements in the other set

Mapping Cardinalities affect ER Design Can make access-date an attribute of account, instead

of a relationship attribute, if each account can have only one customer s I.e., the relationship

from account to customer is many to one, or equivalently, customer to account is one to many

E-R Diagrams

 Rectangles represent entity sets.

 Diamonds represent relationship sets.

 Lines link attributes to entity sets and entity sets to relationship sets.

 Ellipses represent attributes

 Double ellipses represent multivalued attributes.

 Dashed ellipses denote derived attributes.

 Underline indicates primary key attributes

Roles

Entity sets of a relationship need not be distinct, The labels “manager” and “worker” are called

roles; they specify how employee entities interact via the works-for relationship set. Roles are

indicated in E-R diagrams by labeling the lines that connect diamonds to rectangles. s Role

labels are optional, and are used to clarify semantics of the relationship

Cardinality Constraints

We express cardinality), signifying “one,” or an constraints by drawing either a directed line (

undirected line (—), signifying “many,” between the relationship set and the entity set. s E.g.:

One-to-one relationship:

 A customer is associated with at most one loan via the relationship borrower

 A loan is associated with at most one customer via borrower

One-To-Many Relationship In the one-to-many relationship a loan is associated with at

most one customer via borrower, a customer is associated with several (including 0) loans via

borrower

72 | P a g e

Many-To-One Relationships In a many-to-one relationship a loan is associated with several

(including 0) customers via borrower, a customer is associated with at most one loan via

borrower

Participation of an Entity Set in a Relationship Set

Total participation (indicated by double line): every entity in the entity set participates in at

least one relationship in the relationship set E.g. participation of loan in borrower is total s

every loan must have a customer associated to it via borrower. Partial participation: some

entities may not participate in any relationship in the relationship set s E.g. participation of

customer in borrower is partial

Keys

A super key of an entity set is a set of one or more attributes whose values uniquely

determine each entity.

A candidate key of an entity set is a minimal super key

Customer-id is candidate key of customer

Eg: - Account-number is candidate key of account s Although several candidate keys may

exist, one of the candidate keys is selected to be the primary key.

Keys for Relationship Sets s The combination of primary keys of the participating entity sets

forms a super key of a relationship set.

(customer-id, account-number) is the super key of depositor

NOTE: this means a pair of entity sets can have at most one relationship in a particular

relationship set. E.g. if we wish to track all access-dates to each account by each customer, we

cannot assume a relationship for each access. We can use a multivalued attribute though.

Must consider the mapping cardinality of the relationship set when deciding the what are the

candidate keys. Need to consider semantics of relationship set in selecting the primary key in

case of more than one candidate key

73 | P a g e

Cardinality Constraints on Ternary Relationship

We allow at most one arrow out of a ternary (or greater degree) relationship to indicate a

cardinality constraint s E.g. an arrow from works-on to job indicates each employee works on

at most one job at any branch. s If there is more than one arrow, there are two ways of

defining the meaning. 5 E.g a ternary relationship R between A, B and C with arrows to B and

C could mean 5 1. each A entity is associated with a unique entity from B and C or 5 2. each

pair of entities from (A, B) is associated with a unique C entity, and each pair (A, C) is

associated with a unique B 5 Each alternative has been used in different formalisms 5 To

avoid confusion we outlaw more than one arrow DBMS Notes by Ankur Shukla 2.27

www.ankurshukla.com

Binary Vs. Non-Binary Relationships

Some relationships that appear to be non-binary may be better represented using binary

relationships. E.g. A ternary relationship parents, relating a child to his/her father and

mother, is best replaced by two binary relationships, father and mother Using two binary

relationships allows partial information (e.g. only mother being know). But there are some

relationships that are naturally non-binary E.g. works-on

Design Issues

Use of entity sets vs. attributes Choice mainly depends on the structure of the enterprise being

modeled, and on the semantics associated with the attribute in question. Use of entity sets vs.

relationship sets Possible guideline is to designate a relationship set to describe an action that

occurs between entities. Binary versus n-ary relationship sets Although it is possible to

replace any nonbinary (n-ary, for n > 2) relationship set by a number of distinct binary

relationship sets, a n- ary relationship set shows more clearly that several entities participate

in a single relationship. Placement of relationship attributes.

Weak Entity Sets(2 MARKS)

An entity set that does not have a primary key is referred to as a weak entity set. The

existence of a weak entity set depends on the existence of a identifying entity set

It must relate to the identifying entity set via a total, one-to-many relationship set from the

identifying to the weak entity set. Identifying relationship depicted using a double diamond.

The discriminator (or partial key) of a weak entity set is the set of attributes that

74 | P a g e

distinguishes among all the entities of a weak entity set. The primary key of a weak entity set

is formed by the primary key of the strong entity set on which the weak entity set is existence

dependent, plus the weak entity set’s discriminator. We depict a weak entity set by double

rectangles. We underline the discriminator of a weak entity set with a dashed line. payment-

number – discriminator of the payment entity set. Primary key for payment – (loan-number,

payment-number)

Note: the primary key of the strong entity set is not explicitly stored with the weak entity set,

since it is implicit in the identifying relationship. If loan-number were explicitly stored,

payment could be made a strong entity, but then the relationship between payment and loan

would be duplicated by an implicit relationship defined by the attribute loan-number

common to payment and loan

Specialization

Top-down design process; we designate sub groupings within an entity set that are distinctive

from other entities in the set. These sub groupings become lower-level entity sets that have

attributes or participate in relationships that do not apply to the higher-level entity set. s

Depicted by a triangle component labeled ISA (E.g. customer “is a” person). s Attribute

inheritance – a lower-level entity set inherits all the attributes and relationship participation

of the higher-level entity set to which it is linked.

Generalization A bottom-up design process – combine a number of entity sets that share the

same features into a higher-level entity set. Specialization and generalization are simple

inversions of each other; they are represented in an E-R diagram in the same way. The terms

specialization and generalization are used interchangeably.

Aggregation Consider the ternary relationship works-on, which we saw earlier s Suppose we

want to record managers for tasks performed by an employee at a branch. Relationship sets

works-on and manages represent overlapping information

 Every manages relationship corresponds to a works-on relationship

 However, some works-on relationships may not correspond to any manages

relationships So we can’t discard the works-on relationship

 Eliminate this redundancy via aggregation

 Treat relationship as an abstract entity

 Allows relationships between relationships

75 | P a g e

 Abstraction of relationship into new entity Without introducing redundancy, the

following diagram represents:

 An employee works on a particular job at a particular branch

 An employee, branch, job combination may have an associated

16. Explain in detail about the modification of the database(6 Marks)

Modification of the Database: The content of the database may be modified using the

following operations:

 Deletion

 Insertion

 Updating

All these operations are expressed using the assignment operator.

Deletion A delete request is expressed similarly to a query, except instead of displaying

tuples to the user, the selected tuples are removed from the database. Can delete only whole

tuples; cannot delete values on only particular attributes. A deletion is expressed in relational

r–E where r is a relation and E is a relational algebra query.

Delete all account records in branch-name = “Perryridge”

Insertion To insert data into a relation, we either: specify a tuple to be inserted or write a

query whose result is a set of tuples to be inserted s in relational algebra.

Updating A mechanism to change a value in a tuple without charging all values in the tuple s

Use the generalized projection F1, F2, …, FI, (r) s Each Fi is either the ith operator to do this

task r attribute of r, if the ith attribute is not updated, or, if the attribute is to be updated Fi is

an expression, involving only constants and the attributes of r, which gives the new value for

the attribute

Views

In some cases, it is not desirable for all users to see the entire logical model (i.e., all the actual

relations stored in the database.) Consider a person who needs to know a customer’s loan

number but has no need to see the loan amount. This person should see a relation customer-

name, loan-number (borrower described, in the relational algebra, by loan). Any relation that

76 | P a g e

is not of the conceptual model but is made visible to a user as a “virtual relation” is called a

view.

View Definition s A view is defined using the create view statement which has the form

create view v as <query expression where <query expression> is any legal relational algebra

query expression. The view name is represented by v. Once a view is defined, the view name

can be used to refer to the virtual relation that the view generates. View definition is not the

same as creating a new relation by evaluating the query expression Rather, a view definition

causes the saving of an expression; the expression is substituted into queries using the view.

17. Explain in detail Embedded SQL and Dynamic SQL (11 Marks)

Embedded SQL is a method of combining the computing power of a programming language

and the database manipulation capabilities of SQL. It allows programmers to embed SQL

statements in programs written in C/C++, Fortran, COBOL, Pascal, etc.

Embedded SQL statements are SQL statements written within application programming

languages and preprocessed by a SQL preprocessor before the application program is

compiled. There are two types of embedded SQL: static and dynamic.

What is host language?

The SQL standard defines embedding of SQL as embedded SQL and the language in

which SQL queries are embedded is referred to as the host language. A popular host

language is C and the mixed C and embedded SQL is called Pro*C in Oracle and Sybase

database management systems. Other embedded SQL precomilers are Pro*COBOL,

Pro*FORTRAN, Pro*PL/I, Pro*Pascal, and SQL*Module (for Ada).

Using sqlca

 sta-select.sqc (a sample static embedded SQL program)

 dyn-select.sqc (a sample dynamic embedded SQL program)

 makefile (a sample makefile for these two programs)

Using sqlstate (for questions on how to use sqlstate, contact drosu@cs.toronto.edu)

 sta-select.sqc (a sample static embedded SQL program)

 dyn-select.sqc (a sample dynamic embedded SQL program)

 makefile (a sample makefile for these two programs)

http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Category:C_programming_language_family
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/COBOL
http://en.wikipedia.org/wiki/Pascal_%28programming_language%29
http://en.wikipedia.org/wiki/Pro%2AC
http://en.wikipedia.org/wiki/Oracle_Database
http://en.wikipedia.org/wiki/Sybase
http://en.wikipedia.org/wiki/Ada_%28programming_language%29
http://www.cs.toronto.edu/db/courses/db2/sta-select.sqc
http://www.cs.toronto.edu/db/courses/db2/dyn-select.sqc
http://www.cs.toronto.edu/db/courses/db2/makefile
http://www.cs.toronto.edu/db/courses/db2/sqlstate-sta-select.sqc
http://www.cs.toronto.edu/db/courses/db2/sqlstate-dyn-select.sqc
http://www.cs.toronto.edu/db/courses/db2/sqlstate-makefile

77 | P a g e

 Note: before you compile these programs, you need to create

 the following table and insert some tuples in it.

 --*************

 create table video(video_id int not null, \

 video_title varchar(30), \

 director varchar(20), \

 primary key(video_id))

 insert into video values(100,'Titanic','John')

 insert into video values(200,'Mask','Mary')

 insert into video values(300,'Mary had a little lamb','Jim')

Dynamic SQL

What Is Dynamic SQL?

Most database applications do a specific job. For example, a simple program might prompt the

user for an employee number, then update rows in the EMP and DEPT tables. In this case, you

know the makeup of the UPDATE statement at precompile time. That is, you know which

tables might be changed, the constraints defined for each table and column, which columns

might be updated, and the datatype of each column.

However, some applications must accept (or build) and process a variety of SQL statements at

run time. For example, a general-purpose report writer must build different SELECT

statements for the various reports it generates. In this case, the statement's makeup is

unknown until run time. Such statements can, and probably will, change from execution to

execution. They are aptly called dynamic SQL statements.

Unlike static SQL statements, dynamic SQL statements are not embedded in your source

program. Instead, they are stored in character strings input to or built by the program at run

time. They can be entered interactively or read from a file.

Advantages and Disadvantages of Dynamic SQL

78 | P a g e

Host programs that accept and process dynamically defined SQL statements are more

versatile than plain embedded SQL programs. Dynamic SQL statements can be built

interactively with input from users having little or no knowledge of SQL.

For example, your program might simply prompt users for a search condition to be used in

the WHERE clause of a SELECT, UPDATE, or DELETE statement. A more complex program

might allow users to choose from menus listing SQL operations, table and view names, column

names, and so on. Thus, dynamic SQL lets you write highly flexible applications.

However, some dynamic queries require complex coding, the use of special data structures,

and more runtime processing. While you might not notice the added processing time, you

might find the coding difficult unless you fully understand dynamic SQL concepts and

methods.

When to Use Dynamic SQL

In practice, static SQL will meet nearly all your programming needs. Use dynamic SQL only if

you need its open-ended flexibility. Its use is suggested when one of the following items is

unknown at precompile time:

 text of the SQL statement (commands, clauses, and so on)

 the number of host variables

 the datatypes of host variables

 references to database objects such as columns, indexes, sequences, tables, usernames,

and views

Requirements for Dynamic SQL Statements

To represent a dynamic SQL statement, a character string must contain the text of a valid SQL

statement, but not contain the EXEC SQL clause, or the statement terminator, or any of the

following embedded SQL commands:

 CLOSE

 DECLARE

 DESCRIBE

79 | P a g e

 EXECUTE

 FETCH

 INCLUDE

 OPEN

 PREPARE

 WHENEVER

In most cases, the character string can contain dummy host variables. They hold places in the

SQL statement for actual host variables. Because dummy host variables are just placeholders,

you do not declare them and can name them anything you like. For example, Oracle makes no

distinction between the following two strings:

'DELETE FROM EMP WHERE MGR = :mgr_number AND JOB = :job_title'

'DELETE FROM EMP WHERE MGR = :m AND JOB = :j'

How Dynamic SQL Statements Are Processed

Typically, an application program prompts the user for the text of a SQL statement and the

values of host variables used in the statement. Then Oracle parses the SQL statement. That is,

Oracle examines the SQL statement to make sure it follows syntax rules and refers to valid

database objects. Parsing also involves checking database access rights, reserving needed

resources, and finding the optimal access path.

Next, Oracle binds the host variables to the SQL statement. That is, Oracle gets the addresses

of the host variables so that it can read or write their values.

Then Oracle executes the SQL statement. That is, Oracle does what the SQL statement

requested, such as deleting rows from a table.

The SQL statement can be executed repeatedly using new values for the host variables.

Methods for Using Dynamic SQL

This section introduces four methods you can use to define dynamic SQL statements. It briefly

describes the capabilities and limitations of each method, then offers guidelines for choosing

80 | P a g e

the right method. Later sections show you how to use the methods, and include sample

programs that you can study.

The four methods are increasingly general. That is, Method 2 encompasses Method 1, Method

3 encompasses Methods 1 and 2, and so on. However, each method is most useful for handling

a certain kind of SQL statement, as the following table shows:

Method Kind of SQL Statement

1 non query without host variables

2 non query with known number of input host variables

3 query with known number of select-list items and input host variables

4 query with unknown number of select-list items or input host variables

Note: The term select-list item includes column names and expressions such as SAL * 1.10 and

MAX(SAL).

Method 1

This method lets your program accept or build a dynamic SQL statement, then immediately

execute it using the EXECUTE IMMEDIATE command. The SQL statement must not be a query

(SELECT statement) and must not contain any placeholders for input host variables. For

example, the following host strings qualify:

'DELETE FROM EMP WHERE DEPTNO = 20'

'GRANT SELECT ON EMP TO scott'

With Method 1, the SQL statement is parsed every time it is executed.

Method 2

This method lets your program accept or build a dynamic SQL statement, then process it using

the PREPARE and EXECUTE commands. The SQL statement must not be a query. The number

of placeholders for input host variables and the datatypes of the input host variables must be

known at precompile time. For example, the following host strings fall into this category:

'INSERT INTO EMP (ENAME, JOB) VALUES (:emp_name, :job_title)'

'DELETE FROM EMP WHERE EMPNO = :emp_number'

81 | P a g e

With Method 2, the SQL statement is parsed just once, but can be executed many times with

different values for the host variables. SQL data definition statements such as CREATE and

GRANT are executed when they are PREPAREd.

Method 3

This method lets your program accept or build a dynamic query, then process it using the

PREPARE command with the DECLARE, OPEN, FETCH, and CLOSE cursor commands. The

number of select-list items, the number of placeholders for input host variables, and the

datatypes of the input host variables must be known at precompile time. For example, the

following host strings qualify:

'SELECT DEPTNO, MIN(SAL), MAX(SAL) FROM EMP GROUP BY DEPTNO'

'SELECT ENAME, EMPNO FROM EMP WHERE DEPTNO = :dept_number'

Method 4

This method lets your program accept or build a dynamic SQL statement, then process it using

descriptors ("Using Method 4"). The number of select-list items, the number of placeholders

for input host variables, and the datatypes of the input host variables can be unknown until

run time. For example, the following host strings fall into this category:

'INSERT INTO EMP (<unknown>) VALUES (<unknown>)'

'SELECT <unknown> FROM EMP WHERE DEPTNO = 20'

Method 4 is required for dynamic SQL statements that contain an unknown number of select-

list items or input host variables.

Guidelines

With all four methods, you must store the dynamic SQL statement in a character string, which

must be a host variable or quoted literal. When you store the SQL statement in the string, omit

the keywords EXEC SQL and the `;' statement terminator.

With Methods 2 and 3, the number of placeholders for input host variables and the datatypes

of the input host variables must be known at precompile time.

Each succeeding method imposes fewer constraints on your application, but is more difficult

to code. As a rule, use the simplest method you can. However, if a dynamic SQL statement will

be executed repeatedly by Method 1, use Method 2 instead to avoid reparsing for each

execution.

82 | P a g e

Method 4 provides maximum flexibility, but requires complex coding and a full understanding

of dynamic SQL concepts. In general, use Method 4 only if you cannot use Methods 1, 2, or 3.

Avoiding Common Errors

If you precompile using the command-line option DBMS=V6 or DBMS=V6_CHAR, blank-pad

the array before storing the SQL statement. That way, you clear extraneous characters. This is

especially important when you reuse the array for different SQL statements. As a rule, always

initialize (or re-initialize) the host string before storing the SQL statement. Do not null-

terminate the host string. Oracle does not recognize the null terminator as an end-of-string

sentinel. Instead, Oracle treats it as part of the SQL statement.

If you precompile with the command-line option DBMS=V7 (the default), make sure that the

string is null terminated before you execute the PREPARE or EXECUTE IMMEDIATE

statement.

Regardless of the value of DBMS, if you use a VARCHAR variable to store the dynamic SQL

statement, make sure the length of the VARCHAR is set (or reset) correctly before you execute

the PREPARE or EXECUTE IMMEDIATE statement.

18. Elaborate the concept of Advanced SQL

Built-in Data Types in SQL

 date:Dates, containing a (4 digit) year, month and date

Example: date‘2005-7-27’

 time:Time of day, in hours, minutes and seconds.

Example: time‘09:00:30’time‘09:00:30.75’

 timestamp: date plus time of day

Example: timestamp‘2005-7-27 09:00:30.75’

 interval:period of time

Example: interval ‘1’day

Subtracting a date/time/timestamp value from another gives an interval value

Interval values can be added to date/time/timestamp values

Can extract values of individual fields from date/time/timestamp

Example: extract(year fromr.starttime)

Can cast string types to date/time/timestamp

Example: cast<string-valued-expression> as date

83 | P a g e

Example: cast<string-valued-expression> as time

create domainDollarsnumeric(12, 2)

create domainPoundsnumeric(12,2)

 We cannot assign or compare a value of type Dollars to a value of type Pounds.

 However, we can convert type as below

(castr.AasPounds)

(Should also multiply by the dollar-to-pound conversion-rate)

Large Large-Object Types

 Large objects (photos, videos, CAD files, etc.) are stored as a large object:

 blob: binary large object --object is a large collection of uninterpretedbinary data

(whose interpretation is left to an application outside of the database system)

 clob: character large object --object is a large collection of character data

When a query returns a large object, a pointer is returned rather than the large object

itself.

Integrity Constraints

 Integrity constraints guard against accidental damage to the database, by ensuring that

authorized changes to the database do not result in a loss of data consistency.

 A checking account must have a balance greater than $10,000.00

 A salary of a bank employee must be at least $4.00 an hour

 A customer must have a (non-null) phone number

Constraints on a Single Relation

 not null

 primary key

 unique

 check (P),where Pis a predicate

 Not Null Constraint

Declare branch_namefor branchisnot null

branch_name char(15) not null

Declare the domain Dollars to benot null

create domainDollars numeric(12,2)not null

84 | P a g e

The Unique Constraint

 unique(A1, A2, …, Am)

The unique specification states that the attributesA1, A2, …AmForm a candidate

key.Candidate keys are permitted to be non null (in contrastto primary keys).

The check clause

 check (P),where Pis a predicate

Example: Declare branch_nameas the primary key for branchand ensure that the values of

assets are non-negative.create table branch(branch_name char(15),branch_city

char(30),assetsinteger,primary key (branch_name),check(assets >= 0))

 The checkclause in SQL-92 permits domains to be restricted:

 Use checkclause to ensure that an hourly_wage domain allows only values greater

than a specified value.

create domainhourly_wage numeric(5,2)

constraintvalue_test check(value > = 4.00)

 The domain has a constraint that ensures that the hourly_wage isgreater than 4.00

 The clause constraintvalue_testis optional; useful to indicate which constraint an

update violated.

Referential Integrity

 Ensures that a value that appears in one relation for a given set of attributes also

appears for a certain set of attributes in another relation.

 Example: If “Perryridge”is a branch name appearing in one of the tuples in the

accountrelation, then there exists a tuple in the branchrelation for branch “Perryridge”.

 Primary and candidate keys and foreign keys can be specified as part of the SQL create

tablestatement:

 The primary keyclause lists attributes that comprise the primary key.

 The unique keyclause lists attributes that comprise a candidate key.

 The foreign keyclause lists the attributes that comprise the foreign key and the name

of the relation referenced by the foreign key. By default, a foreign key references the

primary key attributes of the referenced table.

Referential Integrity in SQL – Example

create table customer

(customer_namechar(20),customer_streetchar(30),customer_citychar(30),

85 | P a g e

primary key(customer_name))

create table branch(branch_namechar(15),branch_citychar(30),assetsnumeric(12,2),

primary key(branch_name))

create tableaccount

(account_numberchar(10),branch_namechar(15),balanceinteger,primary key

(account_number),foreign key(branch_name)references branch)

create table depositor(customer_namechar(20),account_numberchar(10),primary

key(customer_name, account_number),foreign key(account_number)references account,

foreign key(customer_name)references customer)

Assertions

 An assertionis a predicate expressing a condition that we wish the database always to

satisfy.

 An assertion in SQL takes the form

create assertion <assertion-name> check<predicate>

 When an assertion is made, the system tests it for validity, andtests it again on every

update that may violate the assertion

 This testing may introduce a significant amount of overhead; hence assertions should

be used with great care.

 Asserting for all X, P(X) is achieved in a round-about fashion using not exists Xsuch

that not P(X)

Assertion Example

 Every loan has at least one borrower who maintains an account with a minimum

balance or $1000.00

create assertion balance_constraint check(not exists (select * from loanwhere not exists (

select *from borrower, depositor, account where loan.loan_number = borrower.loan_number

and borrower.customer_name = depositor.customer_name anddepositor.account_number =

account.account_number and account.balance >= 1000)))

Assertion Example

 The sum of all loan amounts for each branch must be less than the sum of all account

balances at the branch.

create assertionsum_constraint check(not exists (select * from branch

where (select sum(amount) from loan where loan.branch_name =branch.branch_name)

86 | P a g e

>= (select sum (amount)fromaccount where loan.branch_name =branch.branch_name)))

Authorization

Forms of authorization on parts of the database:

 Read -allows reading, but not modification of data.

 Insert -allows insertion of new data, but not modification of existing data.

 Update -allows modification, but not deletion of data.

 Delete -allows deletion of data.

Forms of authorization to modify the database schema (covered inChapter 8):

 Index -allows creation and deletion of indices.

 Resources -allows creation of new relations.

 Alteration -allows addition or deletion of attributes in a relation.

 Drop -allows deletion of relations.

Authorization Specification in SQL

 The grant statement is used to confer authorization

grant<privilege list>on <relation name or view name> to<user list>

<user list> is:a user-id

 public, which allows all valid users the privilege granted

A role Granting a privilege on a view does not imply granting any privileges on the

underlying relations.

The grantor of the privilege must already hold the privilege on the specified item (or be

the database administrator).

Privileges in SQL

 select:allows read access to relation,or the ability to query using the view

 Example: grant users U1, U2, and U3selectauthorization on the branch relation:

grant select on branch to U1, U2, U3

 insert: the ability to insert tuples

 update: the ability to update using the SQL update statement

 delete: the ability to delete tuples.

 all privileges: used as a short form for all the allowable privileges

Revoking Authorization in SQL

The revoke statement is used to revoke authorization.

revoke <privilege list>on <relation name or view name> from <user list>

87 | P a g e

Example:

revoke select on branch from U1, U2, U3<privilege-list> may be all to revoke all privileges

the revoke may hold.

If <revokee-list> includes public, all users lose the privilege except those granted it explicitly.

If the same privilege was granted twice to the same user by different grantees, the user may

retain the privilege after the revocation.

All privileges that depend on the privilege being revoked are also revoked.

19. Table: EMP Emp(empno, ename, job, mgr, hiredate, salary, comm., deptno)

a.List all the employees who have at least one person reporting to them.

SELECT DISTINCT(A.ENAME) FROM EMP A, EMP B WHERE A.EMPNO = B.MGR; or SELECT

ENAME FROM EMP WHERE EMPNO IN (SELECT MGR FROM EMP);

 b.List the employee details if and only if more than 10 employees are present in

department no 10.

SELECT * FROM EMP WHERE DEPTNO IN (SELECT DEPTNO FROM EMP GROUP BY DEPTNO

HAVING COUNT(EMPNO)>10 AND DEPTNO=10);

c. List the name of the employees with their immediate higher authority.

SELECT A.ENAME “EMPLOYEE”, B.ENAME “REPORTS TO” FROM EMP A, EMP B WHERE

A.MGR=B.EMPNO;

d. List all the employees who do not manage any one.

SELECT * FROM EMP WHERE EMPNO IN (SELECT EMPNO FROM EMP MINUS SELECT MGR

FROM EMP);

e. List the employee details whose salary is greater than the lowest salary of an

employee belonging to deptno 20.

SELECT * FROM EMP WHERE SAL > (SELECT MIN(SAL) FROM EMP GROUP BY DEPTNO

HAVING DEPTNO=20);

20. Discuss with examples various operations of Relation Algebra Operations.

The relational algebra is a procedural query language. It consists of a set of operations that

Union take one or two relations as input and produce a new relation as their result.

The operations can be divided into,

 Basic operations: Select, Project, Union, rename, set difference and Cartesian product

 Additional operations: Set intersections, natural join, division and assignment.

 Extended operations: Aggregate operations and outer join

88 | P a g e

The fundamental operations are :

1. Union

2. Select

3. Project

4. Set difference

5. Cartesian product and Rename.

For Example:

UNION OPERATION

Consider a query to find the names of all bank customers who have either an account

or a loan or both. Note that the customer relation does not contain the information, since a

customer does not need to have either an account or a loan at the bank.

1. We know how to find the names of all customers with a loan in the bank:

 Πcustomer-name (borrower)

2. We also know how to find the names of all customers with an account in the bank:

 Πcustomer-name (depositor)

The binary operation union, denoted, as in set theory, by U. So the expression needed

is Πcustomer-name (borrower) U Πcustomer-name (depositor). Therefore, for a union

operation r U s to be valid, we require that two conditions hold:

1. The relations r and s must be of the same arity. That is, they must have the same number of

attributes.

2. The domains of the ith attribute of r and the ith attribute of s must be the same, for all i.

1 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

UNIT II

Database Design and the ER Model: Overview of the Design Process – The Entity – Relational Model –

Constraints – Removing Redundant Attributes – Entity – Relationship Design Issues – Extended E-R

Features – Alternative Notations for Modeling data – Other Aspects of Database Design – Storage and File

structure – Indexing and Hashing – Basic Concepts – Ordered Indices – B+ - Tree Index Files – Static

Hashing – Dynamic Hashing – Comparison of Ordered Indexing and Hashing – Bitmap Indices – Index

Definition in SQL.

Unit II- Two Marks

1. What is an entity relationship model?

The entity relationship model is a collection of basic objects called entities and relationship

among those objects. An entity is a thing or object in the real world that is distinguishable

from other objects.

2. What are attributes? Give examples.

An entity is represented by a set of attributes. Attributes are descriptive properties possessed by

each member of an entity set.

Example: possible attributes of customer entity are customer name, customer id, customer

street, customer city.

3. What is relationship? Give examples

A relationship is an association among several entities.

Example: A depositor relationship associates a customer with each account that he/she has.

4. Define Entity, Entity Set, and extensions of entity set. Give one

example for each.(NOV 2012)

 Entity – object or thing in the real world. Egs., each person, book, etc.

 Entity set – set of entities of the same entity that share the same properties or attributes. Eg.,

Instructor, Department,section, etc

 Extensions of entity set – individual entities that constitute a set. Eg., individual bank

customers

5. Define and give examples to illustrate the four types of attributes in database. (NOV 2010)

Simple and Composite attribute

o Simple (address)

o Composite (street, city, district)

2 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

Single-valued and multi-valued attribute

o Single-valued (roll no)

o Multi-valued (colors = {R,B,G})

Null attribute

o No values for attribute

Derived attribute

o Age derived from Birth date

 Single-valued and multi-valued attribute

o Single-valued (roll no)

o Multi-valued (colors = {R,B,G})

 Null attribute

o No values for attribute

 Derived attribute

o Age derived from Birth date

6. Define the terms

 i) Entity type & ii) Entity set

Entity type: An entity type defines a collection of entities that have the same attributes.

Entity set: The set of all entities of the same type is termed as an entity set.

7. What is meant by the degree of relationship set?

The degree of relationship type is the number of participating entity types.

8. Define the terms

i) Key attribute

ii) Value set

Key attribute: An entity type usually has an attribute whose values are distinct from each

individual entity in the collection. Such an attribute is called a key attribute.

Value set: Each simple attribute of an entity type is associated with a value set that specifies

the set of values that may be assigned to that attribute for each individual entity.

9. Define relationship and participation.

o Relationship is an association among several entities.

o Association between entity sets is referred as participation.

10. Define mapping cardinality or cardinality ratio.

Mapping cardinality or cardinality ratio is the way to express the number of entities to

which another entity can be associated through a relationship set. These are most useful in

describing binary relationship sets.

3 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

11. Explain the four types of mapping cardinality with example.

For a binary relationship set R between entity sets A and B, the mapping cardinality must

be one of the following: (Draw the diagrams also)

 One-to-one

An entity in A is associated with at most one entity in B and an entity in B is associated with at

most one entity in A. Eg., Roll no entity in Student info entity set and marks details entity set.

 One-to-many

An entity in A is associated with any number of entities in B. But an entity in B is associated

with at most one entity in A. Eg., one customer with many loans.

 Many-to-one

An entity in A is associated with at most one entity in B. But an entity in B can be associated

with any number of entities in A. Eg., street and city associated to a single person.

 Many-to-many

An entity in A is associated with any number of entities in B. But an entity in B can be

associated with any number of entities in A. Eg., same loan by several business partners.

12. Differentiate total participation and partial participation. (i.e., write

 Definition and Example with illustration)

 Total – participation of an entity set, E in relationship, R is total if every entity in E participates

in at least one relationship in R. Eg., loan entity set.

 Partial – if only some entities in E participate in R. Eg., payment weak entity set.

13. Define E-R diagram.

Overall structure of a database can be expressed graphically by E-R diagram for simplicity

and clarity.

14. Define weak Entity set. Give an example and explain why it is weak entity set.

Entity set with no sufficient attributes to form a primary key.

 Payment entity set is weak since duplication exists

15. Define discriminator or partial key of a weak entity set. Give

example.

Set of attributes that allow distinction to be made among all those entities in the entity set

that depend on one particular strong entity. Eg., payment_no in payment entity set. It is also called

as partial key.

16. Define strong and weak entity sets? NOV 2014

 An entity set may not have sufficient attributes to form a primary key. Such an entity set is

termed a weak entity set. An entity set that has a primary key is termed a strong entity set.

4 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

17. Define the term Canonical Form? APR 2014

Sets of functional dependencies may have redundant dependencies that can be
inferred from the others

 For example: A →Cis redundant in: {A→B, B→C}
 Parts of a functional dependency may be redundant
 E.g.: on RHS: {A→B, B→C, A→CD} can be simplified to {A→B, B→C, A→D}
 E.g.: on LHS: {A →B, B→C, AC→D} can be simplified to {A →B, B→C, A→D}

18. What is E-R modeling? APR 2015

Entity–Relationship model (ER model) is a data model for describing the data or

information aspects of a business domain or its process requirements, in an abstract way that

lends itself to ultimately being implemented in a database such as a relational database. The main

components of ER models are entities (things) and the relationships that can exist among them.

19. What is logical data independence?

Logical data is data about database, that is, it stores information about how data is managed

inside. For example, a table (relation) stored in the database and all its constraints, applied on

that relation.

Logical data independence is a kind of mechanism, which liberalizes itself from actual data

stored on the disk. If any changes on table format, it should not change the data residing on the

disk.

20. What are the types of indices? (April 2014)

 Ordered indices: Based on a sorted ordering of the values.

Hash indices: Based on a uniform distribution of values across a range of bucket. The

bucket to which a value is assigned is determined by a function, called a hash function.

21. What are the techniques of indexing & hashing?(Nov 2014)

 Access types

 Access time

 Insertion time

 Deletion time

 Space overhead

22. What is dense index?

An index record appears for every search key value in the file. In a dense clustering index,

the index record contains search key value and a pointer to the first data record with that

search key value.

23. What is sparse index?

 An index record appears for only some of the search key values in a file. Such a

24. What is a multilevel index?

Indices with two or more levels are called multilevel indices, multilevel indices are closely

related to the tree structures such as binary tree used for memory indexing.

http://en.wikipedia.org/wiki/Data_modeling
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Entities

5 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

25. What are B+ tree index files?

A B+ tree index takes the form of a balanced tree in which every path from the root of the

tree to the leaf of the tree is of the same length.

26. What is the use of static hashing?

To access a file in sequential organization binary search or indexing is used, this creates

more i/o operations to avoid this static hashing is used.

27. What is a hash function?

A hash functions distributes the stored key uniformly across all the buckets, so that every

bucket has the same number of records.

28. What is skew?

Some buckets are assigned more records than the others, so a bucket may over flow even

when other buckets still have space. This situation is called bucket skew

29. What are the two reasons for the occurrence of skew?

 Multiple records may have the same search key

 The chosen hash function may result in non uniform distribution of search keys

30. What is a hash index?

 A hash index organizes the search keys, with their associated pointers into a hash file

structure.

31. Define dynamic hashing?

 Dynamic hashing techniques allow the hash function to be modified dynamically to

accommodate the growth are shrinkage of the database, one form of the dynamic hashing is

called extendable hashing.

32. What is a bitmap indices?

Bitmap indices are a specialized type of index designed for easy querying on multiple keys,

although each bitmap index is built on a single key.

33. Define covering indices?

 Covering indices are the indices that store the values of some attributes along with the

pointers to the record. Storing extra attribute values is useful with secondary indices, since

they allow us to answer some queries using just the index, without even looking up the actual

records.

34. What is Hashing? (April 2013)

Hashing is the transformation of a string of characters into a usually shorter fixed-length

value or key that represents the original string. Hashing is used to index and retrieve items in

a database because it is faster to find the item using the shorter hashed key than to find it using

the original value. It is also used in many encryption algorithms.

35. List out the different types of indices.(April 2011),NOV 2015

Ordered indices: Based on a sorted ordering of the values.

http://searchcio-midmarket.techtarget.com/definition/character
http://searchsqlserver.techtarget.com/definition/database
http://searchsecurity.techtarget.com/definition/encryption

6 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

Hash indices: Based on a uniform distribution of values across a range of bucket. The bucket to

which a value is assigned is determined by a function, called a hash function

36. What is B+ tree? (APRIL 2015)

A dynamic data structure which adjusts efficiently under inserts and deletes. data entries are

stored at the leaf level. Automatically reorganizes itself with small, local, changes, in the face of

insertions and deletions. Reorganization of entire file is not required to maintain performance.

37. Give example for Composite Attribute.(NOV 2015)

Abdul Kadhir Shahid is the name of a student. Here we can combine, three names to a

single values.

38. How primary indices differ from secondary indices. .(NOV 2015)

Primary index:

A primary index is an index on a set of fields that includes the unique primary key for the

field and is guaranteed not to contain duplicates. Also Called a Clustered index. eg.

Employee ID can be Example of it.

Secondary index:

A Secondary index is an index that is not a primary index and may have duplicates. eg.

Employee name can be example of it. Because Employee name can have similar values.

7 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

Unit II- Eleven Marks

1. Explain in detail about Entity Set? (11 Marks)

An entity is a “thing” or “object” in the real world that is distinguishable from all other

objects. For example, each person in an enterprise is an entity. An entity has a set of properties,

and the values for some set of properties may uniquely identify an entity. An entity may be

concrete, such as a person or a book, or it may be abstract, such as a loan, or a holiday, or a

concept.

An entity set is a set of entities of the same type that share the same properties, or

attributes. The set of all persons who are customers at a given bank, for example, can be defined

as the entity set customer. An entity is represented by a set of attributes. Attributes are

descriptive properties possessed by each member of an entity set. The designation of an attribute

for an entity set expresses that the database stores similar information concerning each entity in

the entity set; however, each entity may have its own value for each attribute. Possible attributes

of the customer entity set are customer-id, customer-name, Customer Street, and customer-city.

In real life, there would be further attributes, such as street number, apartment number, state,

postal code, and country etc.

Each entity has a value for each of its attributes. For instance, a particular customer entity

may have the value 321-12-3123 for customer-id, the value Jones for customer name, the value

Main for customer-street, and the value Harrison for customer-city. The customer-id attribute is

used to uniquely identify customers, since there may be more than one customer with the same

name. For each attribute, there is a set of permitted values, called the domain, or value set, of

that attribute. The domain of attribute customer-name might be the set of all text strings of a

certain length.

A database thus includes a collection of entity sets, each of which contains any number of

entities of the same type. An attribute, as used in the E-R model, can be characterized by the

following attribute

types:

 Simple and composite attributes. In our examples thus far, the attributes have been

simple; that is, they are not divided into subparts. Composite attributes, on the other

hand, can be divided into subparts (that is, other attributes). For example, an attribute

name could be structured as a composite attribute consisting of first-name, middle-initial,

and last-name.

 Single-valued and multivalued attributes. The attributes in our examples all have a

single value for a particular entity. For instance, the loan-number attribute for a specific

loan entity refers to only one loan number. Such attribute are said to be single valued.

8 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

 An employee may have zero, one, or several phone numbers, and different employees may

have different numbers of phones. This type of attribute is said to be multivalued.

 Derived attribute. The value for this type of attribute can be derived from the values of

other related attributes or entities. For instance, let us say that the customer entity set has

an attribute loans-held, which represents how many loans a customer has from the bank.

We can derive the value for this attribute by counting the number of loan entities

associated with that customer.

An attribute takes a null value when an entity does not have a value for it. The null value may

indicate “not applicable”—that is, that the value does not exist for the entity. For example, one

may have no middle name. Null can also designate that an attribute value is unknown. An

unknown value may be either missing (the value does exist, but we do not have that information)

or not known (we do not know whether or not the value actually exists).

2. Explain relationship set? (11 Marks)

A relationship is an association among several entities. For example, we can define a

relationship that associates customer Hayes with loan L-15. This relationship specifies that Hayes

is a customer with loan number L-15.

9 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

A relationship set is a set of relationships of the same type. Formally, it is a mathematical

relation on n ≥ 2 (possibly nondistinct) entity sets. If E1, E2, . . .,En are entity sets, then a

relationship set R is a subset of

{(e1, e2, . . . , en) | e1 ∈ E1, e2 ∈ E2, . . . , en ∈ En}

where (e1, e2, . . . , en) is a relationship.

As another example, consider the two entity sets loan and branch. We can define the relationship

set loan-branch to denote the association between a bank loan and the branch in which that loan

is maintained.

The association between entity sets is referred to as participation; that is, the entity sets E1, E2, . .

., En participate in relationship set R. A relationship instance in an E-R schema represents an

association between the named entities.

 The function that an entity plays in a relationship is called that entity’s role. Since entity

sets participating in a relationship set are generally distinct, roles are implicit and are not usually

specified. The same entity set participates in a relationship set more than once, in different roles.

In this type of relationship set, sometimes called a recursive relationship set, explicit role names

are necessary to specify how an entity participates in a relationship instance. A relationship may

also have attributes called descriptive attributes. Consider a relationship set depositor with

entity sets customer and account. However, there can be more than one relationship set involving

the same entity sets. In our example the customer and loan entity sets participate in the

relationship set borrower. Additionally, suppose each loan must have another customer who

serves as a guarantor for the loan. Then the customer and loan entity sets may participate in

another relationship set, guarantor.

The relationship sets borrower and loan-branch provide an example of a binary

relationship set that is, one that involves two entity sets. Most of the relationship sets in a

database system are binary. The number of entity sets that participate in a relationship set is also

the degree of the relationship set. A binary relationship set is of degree 2; a ternary relationship

set is of degree 3.

10 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

3.Explain in detail about constraints and keys? (11 Marks)

a) Mapping Cardinalities (TWO MARKS NOV 2012)

Mapping cardinalities, or cardinality ratios, express the number of entities to which

another entity can be associated via a relationship set. Mapping cardinalities are most useful in

describing binary relationship sets, although they can contribute to the description of

relationship sets that involve more than two entity sets. In this section, we shall concentrate on

only binary relationship

sets.

For a binary relationship set R between entity sets A and B, the mapping cardinality must be one

of the following:

• One to one. An entity in A is associated with at most one entity in B, and an entity in B is

associated with at most one entity in A. (See Figure 2.4a.)

• One to many. An entity in A is associated with any number (zero or more) of entities in B. An

entity in B, however, can be associated with at most one entity in A. (See Figure 2.4b.)

• Many to one. An entity in A is associated with at most one entity in B. An entity in B, however,

can be associated with any number (zero or more) of entities in A. (See Figure 2.5a.)

• Many to many. An entity in A is associated with any number (zero or more) of entities in B, and

an entity in B is associated with any number (zero or more) of entities in A. (See Figure 2.5b.)

11 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

b) Participation Constraints

The participation of an entity set E in a relationship set R is said to be total if every entity

in E participates in at least one relationship in R. If only some entities in E participate in

relationships in R, the participation of entity set E in relationship R is said to be partial. For

example, we expect every loan entity to be related to at least one customer through the borrower

relationship. Therefore the participation of loan in the relationship set borrower is total. In

contrast, an individual can be a bank customer whether or not she has a loan with the bank.

Hence, it is possible that only some of the customer entities are related to the loan entity set

through the borrower relationship, and the participation of customer in the borrower

relationship set is therefore partial.

Keys

A key allows us to identify a set of attributes that suffice to distinguish entities from each other.

Keys also help uniquely identify relationships, and thus distinguish relationships from each other.

a) Entity Sets

A superkey is a set of one or more attributes that, taken collectively, allow us to identify uniquely

an entity in the entity set. For example, the customer-id attribute of the entity set customer is

sufficient to distinguish one customer entity from another. Thus, customer-id is a superkey.

Similarly, the combination of customer-name and customer-id is a superkey for the entity set

customer. The customer-name attribute of customer is not a superkey, because several people

12 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

might have the same name. The concept of a superkey is not sufficient for our purposes, since, as

we saw, a superkey may contain extraneous attributes. If K is a superkey, then so is any superset

of K. We are often interested in superkeys for which no proper subset is a superkey. Such

minimal superkeys are called candidate keys. It is possible that several distinct sets of attributes

could serve as a candidate key.

 Although the attributes customerid and customer-name together can distinguish customer

entities, their combination does not form a candidate key, since the attribute customer-id alone is

a candidate key. We shall use the term primary key to denote a candidate key that is chosen by

the database designer as the principal means of identifying entities within an entity set. A key

(primary, candidate, and super) is a property of the entity set, rather than of the individual

entities. Any two individual entities in the set are prohibited from having the same value on the

key attributes at the same time.

The primary key should be chosen such that its attributes are never, or very rarely, changed. For

instance, the address field of a person should not be part of the primary key, since it is likely to

change. Social-security numbers, on the other hand, are guaranteed to never change. Unique

identifiers generated by enterprises generally do not change, except if two enterprises merge; in

such a case the same identifier may have been issued by both enterprises, and a reallocation of

identifiers may be required to make sure they are unique.

b) Relationship sets

The primary key of an entity set allows us to distinguish among the various entities of the set. Let

R be a relationship set involving entity sets E1, E2, . . .,En. Let primary-key(Ei) denote the set of

attributes that forms the primary key for entity set Ei. Assume for now that the attribute names of

all primary keys are unique, and each entity set participates only once in the relationship. The

composition of the primary key for a relationship set depends on the set of attributes associated

with the relationship set R.

If the relationship set R has no attributes associated with it, then the set of attributes

primary-key(E1) ∪ primary-key(E2) ∪ · · · ∪ primary-key(En)

describes an individual relationship in set R.

If the relationship set R has attributes a1, a2, · · · , am associated with it, then the set

of attributes

primary-key(E1) ∪ primary-key(E2) ∪ · · · ∪ primary-key(En) ∪ {a1, a2, . . . , am}

describes an individual relationship in set R.

13 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

In both of the above cases, the set of attributes

primary-key(E1) ∪ primary-key(E2) ∪ · · · ∪ primary-key(En)

forms a superkey for the relationship set.

In case the attribute names of primary keys are not unique across entity sets, the attributes are

renamed to distinguish them; the name of the entity set combined with the name of the attribute

would form a unique name. The role name is used instead of the name of the entity set, to form a

unique attribute name. The structure of the primary key for the relationship set depends on the

mapping cardinality of the relationship set.

4. Explain in detail about design issues? (11 Marks)

a) Use of Entity Sets versus Attributes

Consider the entity set employee with attributes employee-name and telephone-number. We

must redefine the employee entity set as:

• The employee entity set with attribute employee-name

• The telephone entity set with attributes telephone-number and location

• The relationship set emp-telephone, which denotes the association between employees

and the telephones that they have.

Treating a telephone as an attribute telephone-number implies that employees have precisely

one telephone number each. Treating a telephone as an entity telephone permits employees to

have several telephone numbers (including zero) associated with them. However, we could

instead easily define telephone-number as a multivalued attribute to allow multiple telephones

per employee.The main difference then is that treating a telephone as an entity better models a

situation where one may want to keep extra information about a telephone, such as its location,

or its type (mobile, video phone, or plain old telephone), or who all share the telephone. Thus,

treating telephone as an entity is more general than treating it as an attribute and is appropriate

when the generality may be useful.

b) Use of Entity Sets versus Relationship Sets

We assumed that a bank loan is modeled as an entity. An alternative is to model a loan not as an

entity, but rather as a relationship between customers and branches, with loan-number and

amount as descriptive attributes. Each loan is represented by a relationship between a customer

and a branch. If every loan is held by exactly one customer and is associated with exactly one

branch, we may find satisfactory the design where a loan is represented as a relationship.

However, with this design, we cannot represent conveniently a situation in which several

customers hold a loan jointly. To handle such a situation, we must define a separate relationship

14 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

for each holder of the joint loan. Then, we must replicate the values for the descriptive attributes

loan-number and amount in each such relationship. Each such relationship must, of course, have

the same value for the descriptive attributes loan-number and amount. Two problems arise as a

result of the replication: (1) the data are stored multiple times, wasting storage space, and (2)

updates potentially leave the data in an inconsistent state, where the values differ in two

relationships for attributes that are supposed to have the same value. The problem of replication

of the attributes loan-number and amount is absent in the original design , because there loan is

an entity set. One possible guideline in determining whether to use an entity set or a relationship

set is to designate a relationship set to describe an action that occurs between entities. This

approach can also be useful in deciding whether certain attributes may be more appropriately

expressed as relationships.

Binary versus n-ary Relationship Sets

Relationships in databases are often binary. Some relationships that appear to be nonbinary

could actually be better represented by several binary relationships. For instance, one could

create a ternary relationship parent, relating a child to his/her mother and father. However, such

a relationship could also be represented by two binary relationships, mother and father, relating

a child to his/her mother and father separately. Using the two relationships mother and father

allows us record a child’s mother, even if we are not aware of the father’s identity; a null value

would be required if the ternary relationship parent is used.

We replace the relationship set R by an entity set E, and create three relationship sets:

• RA, relating E and A

• RB, relating E and B

• RC, relating E and C

If the relationship set R had any attributes, these are assigned to entity set E; further, a special

identifying attribute is created for E (since it must be possible to distinguish different entities in

an entity set on the basis of their attribute values). For each relationship (ai, bi, ci) in the

relationship set R, we create a new entity ei in the entity set E. Then, in each of the three new

relationship sets, we insert a relationship as follows:

• (ei, ai) in RA

• (ei, bi) in RB

• (ei, ci) in RC

We can generalize this process in a straightforward manner to n-ary relationship sets. Thus,

conceptually, we can restrict the E-R model to include only binary relationship sets. However,

this restriction is not always desirable.

15 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

 An identifying attribute may have to be created for the entity set created to represent the

relationship set. This attribute, along with the extra relationship sets required, increases

the complexity of the design and overall storage requirements.

 A n-ary relationship set shows more clearly that several entities participate in a single

relationship.

 There may not be a way to translate constraints on the ternary relationship into

constraints on the binary relationships.

Placement of Relationship Attributes

The cardinality ratio of a relationship can affect the placement of relationship attributes. Thus,

attributes of one-to-one or one-to-many relationship sets can be associated with one of the

participating entity sets, rather than with the relationship set. For instance, let us specify that

depositor is a one-to-many relationship set such that one customer may have several accounts,

but each account is held by only one customer. In this case, the attribute access-date,which

specifies when the customer last accessed that account, could be associated with the account

entity set.

The choice of attribute placement is more clear-cut for many-to-many relationship sets. Example,

let us specify the perhaps more realistic case that depositor is a many-to-many relationship set

expressing that a customer may have one or more accounts, and that an account can be held by

one or more customers. If we are to express the date on which a specific customer last accessed a

specific account, access-date must be an attribute of the depositor relationship set, rather than

either one of the participating entities. If access-date were an attribute of account, for instance,

we could not determine which customer made the most recent access to a joint account. When an

attribute is determined by the combination of participating entity sets, rather than by either

entity separately, that attribute must be associated with the many-to-many relationship set.

16 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

Access-date as attribute of the account entity set.

Access-date as attribute of the depositor relationship set.

5. Explain Entity-Relationship Diagram? (11 Marks) APRIL 2014, NOV 2015

The following major components:

• Rectangles, which represent entity sets

• Ellipses, which represent attributes

• Diamonds, which represent relationship sets

• Lines, which link attributes to entity sets and entity sets to relationship sets

• Double ellipses, which represent multivalued attributes

17 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

• Dashed ellipses, which denote derived attributes

• Double lines, which indicate total participation of an entity in a relationship set

• Double rectangles, which represent weak entity

Consider the entity-relationship diagram which consists of two entity sets, customer and loan,

related through a binary relationship set borrower. The attributes associated with customer are

customer-id, customer-name, customer-street, and customer-city. The attributes associated with

loan are loan-number and amount.

The relationship set borrower may be many-to-many, one-to-many, many-to-one, or one-to-one.

To distinguish among these types, we draw either a directed line (→) or an undirected line (—)

between the relationship set and the entity set in question.

 A directed line from the relationship set borrower to the entity set loan specifies that

borrower is either aone-to-one or many-to-one relationship set, from customer to loan;

borrower cannot be a many-to-many or a one-to-many relationship set from customer to

loan.

 An undirected line fromthe relationship set borrower to the entity set loan specifies that

borrower is either a many-to-many or one-to-many relationship set from customer to

loan.

E-R diagram corresponding to customers and loans.

18 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

Relationships. (a) one to many. (b) many to one. (c) one-to-one.

E-R diagram with an attribute attached to a relationship set.

A multivalued attribute phone-number, depicted by a double ellipse, and a derived attribute age,

depicted by a dashed ellipse.

19 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

E-R diagram with composite, multivalued, and derived attributes.

E-R diagram with role indicators

The role indicators manager and worker between the employee entity set and the works-for

relationship set. Nonbinary relationship sets can be specified easily in an E-R diagram.

This consists of the three entity sets employee, job, and branch, related through the relationship

set works-on.

Suppose there is a relationship set R between entity sets A1,A2, . . .,An, and the only arrows are on

the edges to entity sets Ai+1,Ai+2, . . . , An. Then, the two possible interpretations are:

1. A particular combination of entities fromA1,A2, . . .,Ai can be associated with at most one

combination of entities from Ai+1,Ai+2, . . .,An. Thus, the primarykey for the relationship R can be

constructed by the union of the primary keys of A1,A2, . . .,Ai.

2. For each entity set Ak, i< k ≤ n, each combination of the entities from the other entity sets can

be associated with at most one entity from Ak. Each set {A1,A2, . . .,Ak−1,Ak+1, . . .,An}, for i< k ≤ n,

then forms a candidate key.

20 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

E-R diagram with a ternary relationship.

Total participation of an entity set in a relationship set.

Double lines are used in an E-R diagram to indicate that the participation of an entity set in a

relationship set is total; that is, each entity in the entity set occurs in at least one relationship in

that relationship set. For instance, consider the relationship borrower between customers and

loans. A double line from loan to borrower, as in Figure 2.14, indicates that each loan must have

at least one associated customer.

It is easy to misinterpret the 0..∗on the edge between customer and borrower, and think that the

relationship borrower is many to one from customer to loan—this is exactly the reverse of the

correct interpretation. If both edges from a binary relationship have a maximum value of 1, the

relationship is one to one. If we had specified a cardinality limit of 1..∗on the edge between

customer and borrower, we would be saying that each customer must have at least one loan.

Cardinality limits on relationship sets.

21 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

6. Explain Weak Entity Sets? (11 Marks)

An entity set may not have sufficient attributes to form a primary key. Such an entity set is

termed a weak entity set. An entity set that has a primary key is termed a strong entity set.

Consider the entity set payment, which has the three attributes: payment-number, payment-date,

and payment-amount. Payment numbers are typically sequential numbers, starting from 1,

generated separately for each loan. Thus, although each payment entity is distinct, payments for

different loans may share the same payment number. Thus, this entity set does not have a

primary key; it is a weak entity set.

For a weak entity set to be meaningful, it must be associated with another entity set, called the

identifying or owner entity set. Every weak entity must be associated with an identifying entity;

that is, the weak entity set is said to be existence dependent on the identifying entity set. The

identifying entity set is said to own the weak entity set that it identifies. The relationship

associating the weak entity set with the identifying entity set is called the identifying

relationship. The identifying relationship is many to one from the weak entity set to the

identifying entity set, and the participation of the weak entity set in the relationship is total.

Although a weak entity set does not have a primary key, we nevertheless need a means of

distinguishing among all those entities in the weak entity set that depend on one particular

strong entity. The discriminator of a weak entity set is a set of attributes that allows this

distinction to be made.

For example, the discriminator of the weak entity set payment is the attribute payment-number,

since, for each loan, a payment number uniquely identifies one single payment for that loan. The

discriminator of a weak entity set is also called the partial key of the entity set. The primary key

of a weak entity set is formed by the primary key of the identifying entity set, plus the weak entity

set’s discriminator.

The identifying relationship set should have no descriptive attributes, since any required

attributes can be associated with the weak entity set.

A weak entity set can participate in relationships other than the identifying relationship. For

instance, the payment entity could participate in a relationship with the account entity set,

identifying the account from which the payment was made. A weak entity set may participate as

owner in an identifying relationship with another weak entity set. It is also possible to have a

weak entity set with more than one identifying entity set. A particular weak entity would then be

22 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

identified by a combination of entities, one from each identifying entity set. The primary key of

the weak entity set would consist of the union of the primary keys of the identifying entity sets,

plus the discriminator of the weak entity set.

In E-R diagrams, a doubly outlined box indicates a weak entity set, and a doubly outlined

diamond indicates the corresponding identifying relationship.

The database designer may choose to express a weak entity set as a multivalued composite

attribute of the owner entity set. In our example, this alternative would require that the entity set

loan have a multivalued, composite attribute payment, consisting of payment-number, payment-

date, and payment amount. A weak entity set may be more appropriatelymodeled as an attribute

if it participates in only the identifying relationship, and if it has few attributes.

E-R diagram with a weak entity set.

7. Explain specialization and generalization? (11 Marks)

Extended E-R Features

Specialization

An entity set may include subgroupings of entities that are distinct in some way from other

entities in the set. For instance, a subset of entities within an entity set may have attributes that

are not shared by all the entities in the entity set. The E-R model provides a means for

representing these distinctive entity groupings. Consider an entity set person, with attributes

name, street, and city. A personmay be further classified as one of the following:

• customer

• employee

Each of these person types is described by a set of attributes that includes all the attributes of

entity set person plus possibly additional attributes. For example, customer entities may be

23 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

described further by the attribute customer-id, whereas employee entities may be described

further by the attributes employee-id and salary. The process of designating subgroupings within

an entity set is called specialization. The specialization of person allows us to distinguish among

persons according to whether they are employees or customers.

The bank could then create two specializations of account, namely savings-account and checking

account. The entity set savings-account would have all the attributes of account and an additional

attribute interest-rate. The entity set checking account would have all the attributes of account,

and an additional attribute overdraft amount.

We can apply specialization repeatedly to refine a design scheme. For instance, bank employees

may be further classified as one of the following:

• officer

• teller

• secretary

Each of these employee types is described by a set of attributes that includes all the attributes of

entity set employee plus additional attributes. For example, officer entities may be described

further by the attribute office-number, teller entities by the attributes station-number and hours-

per-week, and secretary entities by the attribute hours-per week. Further, secretary entities may

participate in a relationship secretary-for, which identifies which employees are assisted by a

secretary. An entity set may be specialized by more than one distinguishing feature.

In terms of an E-R diagram, specialization is depicted by a triangle component labeled ISA. The

label ISA stands for “is a” and represents, for example, that a customer “is a” person. The ISA

relationship may also be referred to as a superclass-subclass relationship. Higher- and lower-

level entity sets are depicted as regular entity set that is, as rectangles containing the name of the

entity set.

Generalization

The refinement from an initial entity set into successive levels of entity sub groupings represents

a top down design process in which distinctions are made explicit. The design process may also

proceed in a bottom-up manner, in which multiple entity sets are synthesized into a higher-level

entity set on the basis of common features. The database designer may have first identified a

customer entity set with the attributes name, street, city, and customer-id, and an employee

entity set with the attributes name, street, city, employee-id, and salary.

24 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

There are similarities between the customer entity set and the employee entity set in the sense

that they have several attributes in common. This commonality can be expressed by

generalization, which is a containment relationship that exists between a higher-level entity set

and one or more lower-level entity sets. In our example, personis the higher-level entity set and

customer and employee are lower-level entity sets.

Higher- and lower-level entity sets also may be designated by the terms superclass and

subclass, respectively. The person entity set is the superclass of the customer andemployee

subclasses.generalization is a simple inversion of specialization.

Specialization stems from a single entity set; it emphasizes differences among entities within the

set by creating distinct lower-level entity sets. These lower-level entity sets may have attributes,

or may participate in relationships, that do not apply to all the entities in the higher-level entity

set.

If customer and employee neither have attributes that person entities do not have nor participate

in different relationships than those in which person entities participate, there would be no need

to specialize the person entity set.

Generalization proceeds from the recognition that a number of entity sets share some common

features (namely, they are described by the same attributes and participate in the same

relationship sets). On the basis of their commonalities, generalization synthesizes these entity

sets into a single, higher-level entity set. Generalization is used to emphasize the similarities

among lower-level entity sets and to hide the differences; it also permits an economy of

representation in that shared attributes are not repeated.

Specialization and generalization.

25 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

Attribute Inheritance

A crucial property of the higher- and lower-level entities created by specialization and

generalization is attribute inheritance. The attributes of the higher-level entity sets are said to

be inherited by the lower level entity sets. For example, customer and employee inherit the

attributes of person. Thus, customer is described by its name, street, and city attributes, and

additionally a customer-id attribute; employee is described by its name, street, and city

attributes, and additionally employee-id and salary attributes.

A lower-level entity set (or subclass) also inherits participation in the relationship sets in which

its higher level entity (or superclass) participates. The officer, teller, and secretary entity sets can

participate in the works-for relationship set, since the superclass employee participates in the

works-for relationship. Attribute inheritance applies through all tiers of lower-level entity sets.

The above entity sets can participate in any relationships in which the person entity set

participates. Whether a given portion of an E-R model was arrived at by specialization or

generalization, the outcome is basically the same:

• A higher-level entity set with attributes and relationships that apply to all of its lower-level

entity sets

• Lower-level entity sets with distinctive features that apply only within a particular lower-level

entity set

Employee is a lower-level entity set of person and a higher-level entity set of the officer, teller,

and secretary entity sets. In a hierarchy, a given entity set may be involved as a lower-level entity

set in only one ISA relationship; that is, entity sets in this diagram have only single inheritance.

If an entity set is a lower-level entity set in more than one ISA relationship, then the entity set has

multiple inheritance, and the resulting structure is said to be a lattice.

Constraints on Generalizations

the database designer may choose to place certain constraints on a particular generalization. One

type of constraint involves determining which entities can be members of a given lower-level

entity set. Such membership may be one of the following:

 Condition-defined. In condition-defined lower-level entity sets, membership is evaluated

on the basis of whether or not an entity satisfies an explicit condition or predicate. For

example, assume that the higher level entity set account has the attribute account-type.

All account entities are evaluated on the defining account-type attribute. Only those

26 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

entities that satisfy the condition account-type = “savings account” are allowed to belong

to the lower-level entity set person. All entities that satisfy the condition account-type =

“checking account” are included in checking account. Since all the lower-level entities are

evaluated on the basis of the same attribute (in this case, on account-type), this type of

generalization is said to be attribute-defined.

 User-defined. User-defined lower-level entity sets are not constrained by a membership

condition; rather, the database user assigns entities to a given entity set.

A second type of constraint relates to whether or not entities may belong to more than one lower-

level entity set within a single generalization. The lower-level entity sets may be one of the

following:

 Disjoint. A disjointness constraint requires that an entity belong to no more than one

lower-level entity set. In our example, an account entity can satisfy only one condition for

the account-type attribute; an entity can be either a savings account or a checking

account, but cannot be both.

 Overlapping. In overlapping generalizations, the same entity may belong to more than

one lower-level entity set within a single generalization .A given employee may therefore

appear in more than one of the team entity sets that are lower-level entity sets of

employee. Thus, the generalization is overlapping. As another example, suppose

generalization applied to entity sets customerand employee leads to a higher level entity

set person. The generalization is overlapping if an employee can also be a customer.

A final constraint, the completeness constraint on a generalization or specialization, specifies

whether or not an entity in the higher-level entity set must belong to atleast one of the lower-

level entity sets within the generalization/specialization. This constraint may be one of the

following:

 Total generalization or specialization. Each higher-level entity must belong to a lower-

level entity set.

 Partial generalization or specialization. Some higher-level entities may not belong to

any lower-level entity set.

Partial generalization is the default.We can specify total generalization in an E-R diagram by

using a double line to connect the box representing the higher-level entity set to the triangle

symbol.

27 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

8. Explain Aggregation? (11 Marks)

One limitation of the E-R model is that it cannot express relationships among relationships

One alternative for representing this relationship is to create a quaternary relationship manages

between employee, branch, job, andmanager. (A quaternary relationship is required—a binary

relationship between manager and employee would not permit us to represent which (branch,

job) combinations of an employee are managed by which manager.)

It appears that the relationship sets works-on and manages can be combined into one single

relationship set. If the manager were a value rather than anmanager entity, we could instead

make manager amultivalued attribute of the relationship works-on.

Aggregation is an abstraction through which relationships are treated as higher level entities.

E-R diagram with redundant relationships.

Alternative E-R Notations

An entity set may be represented as a box with the name outside, and the attributes listed one

below the other within the box. The primary key attributes are indicated by listing them at the

top, with a line separating them from the other attributes.

Cardinality constraints can be indicated in several different ways. The labels ∗and 1 on the edges

out of the relationship are sometimes used for depicting many-to-many, one-to-one, and many-

28 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

to-one relationships. Cardinality constraints in such a notation are shown by “crow’s foot”

notation.

E-R diagram with aggregation

Design of an E-R Database Schema

29 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

Symbols used in the E-R notation.

Alternative E-R notations.

9. Explain about Design Phases? (11 Marks)NOV 2014

A high-level data model serves the database designer by providing a conceptual framework in

which to specify, in a systematic fashion, what the data requirements of the database users are,

and how the database will be structured to fulfill these requirements. The initial phase of

database design, then, is to characterize fully the data needs of the prospective database users.

The database designer needs to interactextensively with domain experts and users to carry out

this task. The outcome of this phase is a specification of user requirements.

Next, the designer chooses a data model, and by applying the concepts of the chosen data model,

translates these requirements into a conceptual schema of the database. The schema developed

at this conceptual-design phase provides a detailed overview of the enterprise.

30 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

In a specification of functional requirements, users describe the kinds of operations (or

transactions) that will be performed on the data. Example operations include modifying or

updating data, searching for and retrieving specific data, and deleting data.

Database Design for Banking Enterprise

Data Requirements

The major characteristics of the banking enterprise:

 The bank is organized into branches. Each branch is located in a particular city and is

identified by a unique name. The bank monitors the assets of each branch.

 Bank customers are identified by their customer-id values. The bank stores each

customer’s name, and the street and city where the customer lives. Customer may have

accounts and can take out loans. A customer may be associated with a particular banker,

who may act as a loan officer or personal banker for that customer.

 Bank employees are identified by their employee-id values. The bank administration

stores the name and telephone number of each employee, the names of the employee’s

dependents, and the employee-id number of the employee’s manager. The bank also keeps

track of the employee’s start date and, thus, length of employment.

 The bank offers two types of accounts savings and checking accounts. Accounts can be

held by more than one customer, and a customer can have more than one account. Each

account is assigned a unique account number. The bank maintains a record of each

account’s balance, and the most recent date on which the account was accessed by each

customer holding the account. In addition, each savings account has an interest rate, and

overdrafts are recorded for each checking account.

 A loan originates at a particular branch and can be held by one or more customers. A loan

is identified by a unique loan number. For each loan, the bank keeps track of the loan

amount and the loan payments. Although a loanpayment number does not uniquely

identify a particular payment among those for all the bank’s loans, a payment number

does identify a particular payment for a specific loan. The date and amount are recorded

for each payment.

Entity Sets Designation

 The branch entity set, with attributes branch-name, branch-city, and assets.

31 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

 The customer entity set, with attributes customer-id, customer-name, customerstreet; and

customer-city. A possible additional attribute is banker-name.

 The employee entity set, with attributes employee-id, employee-name, telephonenumber,

salary, and manager. Additional descriptive features are the multivalued attribute

dependent-name, the base attribute start-date, and the derived attribute employment-

length.

 Two account entity sets—savings-account and checking-account—with the common

attributes of account-number and balance; in addition, savings-account has the attribute

interest-rate and checking account has the attribute overdraft-amount.

 The loan entity set, with the attributes loan-number, amount, and originatingbranch.

 The weak entity set loan-payment, with attributes payment-number, paymentdate, and

payment-amount.

Relationship Sets Designation

 borrower, a many-to-many relationship set between customer and loan.

 loan-branch, a many-to-one relationship set that indicates in which branch a loan

originated.

 loan-payment, a one-to-many relationship from loan to payment, which documents that a

payment is made on a loan.

 depositor, with relationship attribute access-date, a many-to-many relationship set

between customer and account, indicating that a customer owns an account.

 cust-banker, with relationship attribute type, a many-to-one relationship set expressing

that a customer can be advised by a bank employee, and that a bank employee can advise

one or more customers. Note that this relationship set has replaced the attribute banker-

name of the entity set customer.

 works-for, a relationship set between employee entities with role indicators manager and

worker; the mapping cardinalities express that an employee worksfor only one manager

and that a manager supervises one or more employees.

32 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

E-R Diagram

Reduction of an E-R Schema to Tables

Tabular Representation of Strong Entity Sets

Let E be a strong entity set with descriptive attributes a1, a2, . . . , an. We represent this entity by a

table called E with n distinct columns, each of which corresponds to one of the attributes of E.

Each row in this table corresponds to one entity of the entity set E.

Consider the entity set loan of the E-R diagram. This entity set has two attributes: loan-number

and amount. We represent this entity set by a table called loan, with two columns.

Let D1 denote the set of all loan numbers, and let D2 denote the set of all balances. Any row of the

loan table must consist of a 2-tuple (v1, v2), where v1 is a loan (that is, v1 is in set D1) and v2 is

an amount (that is, v2 is in set D2). In general, the loan table will contain only a subset of the set

of all possible rows.We refer to the set of all possible rows of loan as the Cartesian product of D1

and D2, denoted by D1 × D2

In general, if we have a table of n columns, we denote the Cartesian product of

33 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

D1, D2, · · ·,Dn by

D1 × D2 × · · · × Dn−1 × Dn

Tabular Representation of Weak Entity Sets

Let A be a weak entity set with attributes a1, a2, . . . , am. Let B be the strong entity set on which A

depends. Let the primary key of B consist of attributes b1, b2, . . . , bn. We represent the entity set

A by a table called A with one column for each attribute of the set:

{a1, a2, . . . , am} ∪ {b1, b2, . . . , bn}

This entity set has three attributes: payment-number, payment-date, andpayment-amount. The

primary key of the loan entity set, on which payment depends, is loan-number. Thus, we

represent payment by a table with four columns labeled loan-number, paymentnumber,

payment-date, and payment-amount.

Tabular Representation of Relationship Sets

Let R be a relationship set, let a1, a2, . . . , am be the set of attributes formed by the union of the

primary keys of each of the entity sets participating in R, and let the descriptive attributes (if any)

of R be b1, b2, . . . , bn. We represent this relationship set by a table called R with one column for

each attribute of the set:

{a1, a2, . . . , am} ∪ {b1, b2, . . . , bn}

This relationship set involves the following two entity sets:

34 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

• customer, with the primary key customer-id

• loan, with the primary key loan-number

Since the relationship set has no attributes, the borrower table has two columns, labelled

customer-id and loan-number.

Redundancy of Tables

A relationship set linking a weak entity set to the corresponding strong entity set is treated

specially. The weak entity set payment is dependent on the strong entity set loan via the

relationship set loan payment. The primary key of payment is {loan-number, payment-number},

and the primary key of loan is {loan-number}. Since loan-payment has no descriptive attributes,

the loan-payment table would have two columns, loan-number and payment number. The table

for the entity set payment has four columns, loan-number, payment number, payment-date, and

payment-amount. Every(loan-number, payment-number) combination in loan-payment would

also be present in the payment table, and vice versa. Thus, the loan-payment table is redundant.

Combination of Tables

35 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

Consider a many-to-one relationship set AB from entity set A to entity set B. Using our table

construction scheme outlined previously, we get three tables: A, B, and AB. Suppose further that

the participation of A in the relationship is total; that is, every entity a in the entity set A must

participate in the relationship AB. Then we can combine the tables A and AB to form a single table

consisting of the union of columns of both tables.

The double line in the E-R diagram indicates that the participation of account in the account-

branch is total. Hence, an account cannot exist without being associated with a particular branch.

Further, the relationship set account-branch is many to one from account to branch. Therefore,

we can combine the table for account-branch with the table for account and require only the

following two tables:

• account, with attributes account-number, balance, and branch-name

• branch, with attributes branch-name, branch-city, and assets

Composite Attributes(2 MARKS NOV 2010)

We handle composite attributes by creating a separate attribute for each of the component

attributes; we do not create a separate column for the composite attribute itself. Suppose address

is a composite attribute of entity set customer, and the components of address are street and city.

The table generated from customer would then contain columns address-street and address-city;

there is no separate column for address.

Multivalued Attributes

We have seen that attributes in an E-R diagram generally map directly into columns for the

appropriate tables. Multivalued attributes, however, are an exception; new tables are created for

these attributes.

Tabular Representation of Generalization

36 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

There are two different methods for transforming to a tabular form an E-R diagram that includes

generalization.

1. Create a table for the higher-level entity set. For each lower-level entity set, create a table that

includes a column for each of the attributes of that entity set plus a column for each attribute of

the primary key of the higher-level entity set. We have three tables:

• account, with attributes account-number and balance

• savings-account, with attributes account-number and interest-rate

• checking-account, with attributes account-number and overdraft-amount

2. An alternative representation is possible, if the generalization is disjoint and complete—that is,

if no entity is a member of two lower-level entity sets directly below a higher-level entity set, and

if every entity in the higher level entity set is also a member of one of the lower-level entity sets.

Here, do not create a table for the higher-level entity set. Instead, for each lower-level entity set,

create a table that includes a column for each of the attributes of that entity set plus a column for

each attribute of the higher-level entity set. We have two tables.

• savings-account, with attributes account-number, balance, and interest-rate

• checking-account, with attributes account-number, balance, and overdraftamount

The savings-account and checking-account relations corresponding to these tables both have

account-number as the primary key.

Tabular Representation of Aggregation

The table for the relationship set manages between the aggregation of works-on and the entity

set manager includes a column for each attribute in the primary keys of the entity set manager

and the relationship set works-on. It would also include a column for any descriptive attributes, if

they exist, of the relationship set manages. We then transform the relationship sets and entity

sets within the aggregated entity.

The Unified Modeling Language UML**

Entity-relationship diagrams help model the data representation component of a software

system. Data representation, however, forms only one part of an overall system design. Other

components include models of user interactions with the system, specification of functional

modules of the system and their interaction, etc. The Unified Modeling Language (UML), is a

proposed standard for creating specifications of various components of a software system. Some

of the parts of UML are:

 Class diagram. A class diagram is similar to an E-R diagram.

37 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

 Use case diagram. Use case diagrams show the interaction between users and the

system, in particular the steps of tasks that users perform (such as withdrawing money or

registering for a course).

 Activity diagram. Activity diagrams depict the flow of tasks between various components

of a system.

 Implementation diagram. Implementation diagrams show the system components and

their interconnections, both at the software component level and the hardware

component level.

Symbols used in theUML class diagram notation.

Nonbinary relationships cannot be directly represented in UML. Cardinality constraints are

specified in UML in the same way as in E-R diagrams, in the form l..h, where l denotes the

minimum and h the maximum number of relationships an entity can participate in. However, you

should be aware that the positioning of the constraints is exactly the reverse of the positioning of

constraints in E-R diagrams,

15. Explain Overall Database Design Process? (11 Marks) NOV2014

38 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

Several ways are:

1. R could have been generated when converting a E-R diagram to a set of tables.

2. R could have been a single relation containing all attributes that are of interest. The

normalization process then breaks up R into smaller relations.

3. R could have been the result of some ad hoc design of relations, which we then test to verify

that it satisfies a desired normal form.

E-R Model and Normalization

Suppose an employee entity had attributes department-number and department-address, and

there is a functional dependency department-number → department-address. We would then

need to normalize the relation generated from employee.

Functional dependencies can help us detect poor E-R design. If the generated relations are not in

desired normal form, the problem can be fixed in the E-R diagram. That is, normalization can be

done formally as part of data modeling. Alternatively, normalization can be left to the designer’s

intuition during E-R modeling, and can be done formally on the relations generated from the E-R

model.

The Universal Relation Approach

The second approach to database design is to start with a single relation schema containing all

attributes of interest, and decompose it. One of our goals in choosing a decomposition was that it

be a lossless-join decomposition.

Dangling tuples may occur in practical database applications. They represent incomplete

information, as they do in our example, wherewe wish to store data about a

loan that is still in the process of being negotiated. The relation r1 � r2 � · · · � rn is

called a universal relation, since it involves all the attributes in the universe defined

by R1 ∪ R2 ∪ · · · ∪ Rn.

The normal forms that we have defined generate good database designs from the point of view of

representation of incomplete information. Returning again to the we would not want to allow

storage of the following fact: “There is a loan (whose number is unknown) to Jones in the amount

of $100.” This is because

loan-number → customer-name amount and therefore the only way that we can relate customer-

name and amount is through loan-number.

Denormalization for Performance

39 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

One alternative to computing the join on the fly is to store a relation containing all the attributes

of account and depositor. Thismakes displaying the account information faster. However, the

balance information for an account is repeated for every person who owns the account, and all

copies must be updated by the application, whenever the account balance is updated. The process

of taking a normalized schema and making it non-normalized is called denormalization, and

designers use it to tune performance of systems to support time-critical operations.

Other Design Issues

Consider a company database, where we want to store earnings of companies in different years. A

relation earnings(company-id, year, amount) could be used to store the earnings information.

The only functional dependency on this relation is company-id, year→ amount, and the relation is

in BCNF. An alternative design is to use multiple relations, each storing the earnings for a

different year. Let us say the years of interest are 2000, 2001, and 2002; we would then have

relations of the form earnings-2000, earnings-2001, earnings-2002, all of which are on the

schema (company-id, earnings). The only functional dependency here on each relation would be

company-id →earnings, so these relations are also in BCNF. However, this alternative design is

clearly a bad idea—we would have to create a new relation every year, and would also have to

write new queries every year, to take each new relation into account. Queries would also be more

complicated since they may have to refer to many relations.

16. Discuss the various concepts of ER Model with an example. APRIL 2015

The following major components:

• Rectangles, which represent entity sets

• Ellipses, which represent attributes

• Diamonds, which represent relationship sets

• Lines, which link attributes to entity sets and entity sets to relationship sets

• Double ellipses, which represent multivalued attributes

• Dashed ellipses, which denote derived attributes

• Double lines, which indicate total participation of an entity in a relationship set

• Double rectangles, which represent weak entity

 Diagram

40 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

E-R diagram corresponding to customers and loans.

17. Explain about Database Design Process APRIL 2015

Database Design for Banking Enterprise

Data Requirements

The major characteristics of the banking enterprise:

 The bank is organized into branches. Each branch is located in a particular city and is identified by

a unique name. The bank monitors the assets of each branch.

 Bank customers are identified by their customer-id values. The bank stores each customer’s name,

and the street and city where the customer lives. Customer may have accounts and can take out

loans. A customer may be associated with a particular banker, who may act as a loan officer or

personal banker for that customer.

Entity Sets Designation

 The branch entity set, with attributes branch-name, branch-city, and assets.

 The customer entity set, with attributes customer-id, customer-name, customerstreet; and

customer-city. A possible additional attribute is banker-name.

Relationship Sets Designation

 borrower, a many-to-many relationship set between customer and loan.

 loan-branch, a many-to-one relationship set that indicates in which branch a loan originated.

E-R Diagram

41 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

Reduction of an E-R Schema to Tables

1. Explain authorization in SQL. With example (April 2011)

 Authorization:

 We may assign a user several forms of authorization on parts of the database.

For example,

o Read authorization allows reading, but not modification, of data.

o Insert authorization allows insertion of new data, but not modification of existing data.

o Update authorization allows modification, but not deletion, of data.

o Delete authorization allows deletion of data.

We may assign the user all, none, or a combination of these types of authorization. In addition to

these forms of authorization for access to data, we may grant a user authorization to modify the

database schema:

o Index authorization allows the creation and deletion of indices.

o Resource authorization allows the creation of new relations.

o Alteration authorization allows the addition or deletion of attributes in a relation.

o Drop authorization allows the deletion of relations.

Authorization in SQL

 The SQL language offers a fairly powerful mechanism for defining authorizations.

Privileges in SQL:

 The SQL standard includes the privileges delete , insert ,select ,and update .

42 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

 The select privilege corresponds to the read privilege.

 SQL also includes a references privilege that permits a user/role to declare foreign keys

when creating relations.

 If the relation to be created includes a foreign key that references attributes of another

relation, the user/role must have been granted references privilege on those attributes.

The SQL data-definition language includes commands to grant and revoke privileges. The grant

statement is used to confer authorization. The basic form of this statement is:

The privilege list allows the granting of several privileges in one command.

 The following grant statement grants users U 1 ,U 2 ,and U 3 select authorization on

the account relation:

grant select on account to U 1 ,U 2 ,U 3

 In the below example, the grant statement gives users U 1 ,U 2 ,and U 3 update

authorization on the amount attribute of the loan relation:

grant update (amount)on loan to U 1 ,U 2 ,U 3

2. Explain Database design process in detail (April 2011)

Database design

Database design is the process of producing a detailed data model of a database. This logical

data model contains all the needed logical and physical design choices and physical storage

parameters needed to generate a design in a Data Definition Language, which can then be used to

create a database. A fully attributed data model contains detailed attributes for each entity.

The term database design can be used to describe many different parts of the design of an overall

database system. Principally, and most correctly, it can be thought of as the logical design of the

base data structures used to store the data. In the relational model these are the tables and views.

In an Object database the entities and relationships map directly to object classes and named

relationships. However, the term database design could also be used to apply to the overall

process of designing, not just the base data structures, but also the forms and queries used as part

of the overall database application within the Database Management System or DBMS.

Design process

The process of doing database design generally consists of a number of steps which will be

carried out by the database designer. Not all of these steps will be necessary in all cases. Usually,

the designer must:

 Determine the data to be stored in the database

 Determine the relationships between the different data elements

 Superimpose a logical structure upon the data on the basis of these relationships.

grant <privilege list >on <relation name or view name >to <user/role list >

http://en.wikipedia.org/wiki/Data_model
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Logical_data_model
http://en.wikipedia.org/wiki/Logical_data_model
http://en.wikipedia.org/wiki/Data_Definition_Language
http://en.wikipedia.org/wiki/Database_system
http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/Database_table
http://en.wikipedia.org/wiki/Database_view
http://en.wikipedia.org/wiki/Object_database
http://en.wikipedia.org/wiki/Database_Management_System

43 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

Within the relational model the final step can generally be broken down into two further steps,

that of determining the grouping of information within the system, generally determining what

are the basic objects about which information is being stored, and then determining the

relationships between these groups of information, or objects. This step is not necessary with an

Object database.

The tree structure of data may enforce a hierarchical model organization, with a parent-child

relationship table. An Object database will simply use a one-to-many relationship between

instances of an object class. It also introduces the concept of a hierarchical relationship between

object classes, termed inheritance

Determining data to be stored

In a majority of cases, the person who is doing the design of a database is a person with expertise

in the area of database design, rather than expertise in the domain from which the data to be

stored is drawn e.g. financial information, biological information etc. Therefore the data to be

stored in the database must be determined in cooperation with a person who does have expertise

in that domain, and who is aware of what data must be stored within the system.

This process is one which is generally considered part of requirements analysis, and requires skill

on the part of the database designer to elicit the needed information from those with the domain

knowledge. This is because those with the necessary domain knowledge frequently cannot

express clearly what their system requirements for the database are as they are unaccustomed to

thinking in terms of the discrete data elements which must be stored.

Conceptual schema

Once a database designer is aware of the data which is to be stored within the database, they

must then determine how the various pieces of that data relate to one another. When performing

this step, the designer is generally looking out for the dependencies in the data, where one piece

of information is dependent upon another i.e. when one piece of information changes, the other

will also. For example, in a list of names and addresses, the address is dependent upon the name,

because if the name is different then the associated address is different too. However, the inverse

is not necessarily true, i.e. when the address changes name may be the same. For example,

assuming the normal situation where two people can have the same address, but one person

cannot have two addresses.

(NOTE: A common misconception is that the relational model is so called because of the stating of

relationships between data elements therein. This is not true. The relational model is so named

such because it is based upon the mathematical structures known as relations.)

Logically structuring data

Once the relationships and dependencies amongst the various pieces of information have been

determined, it is possible to arrange the data into a logical structure which can then be mapped

http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/Object_database
http://en.wikipedia.org/wiki/Hierarchical_model
http://en.wikipedia.org/wiki/Object_database
http://en.wikipedia.org/wiki/Inheritance_%28computer_science%29
http://en.wikipedia.org/wiki/Requirements_analysis
http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/Relation_%28mathematics%29

44 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

into the storage objects supported by the database management system. In the case of relational

databases the storage objects are tables which store data in rows and columns.

Each table may represent an implementation of either a logical object or a relationship joining

one or more instances of one or more logical objects. Relationships between tables may then be

stored as links connecting child tables with parents. Since complex logical relationships are

themselves tables they will probably have links to more than one parent.

In an Object database the storage objects correspond directly to the objects used by the

Object-oriented programming language used to write the applications that will manage and

access the data. The relationships may be defined as attributes of the object classes involved or as

methods that operate on the object classes.

3. Describe Magnetic Disk and Flash storage in detail (April 2012)

Magnetic disks

Physical Characteristics of Disks

1. The storage capacity of a single disk ranges from 10MB to 10GB. A typical commercial

database may require hundreds of disks.

o Each disk platter has a flat circular shape. Its two surfaces are covered with a

magnetic material and information is recorded on the surfaces. The platter of hard

disks are made from rigid metal or glass, while floppy disks are made from flexible

material.

o The disk surface is logically divided into tracks, which are subdivided into sectors. A

sector (varying from 32 bytes to 4096 bytes, usually 512 bytes) is the smallest unit of

information that can be read from or written to disk. There are 4-32 sectors per track

and 20-1500 tracks per disk surface.

o The arm can be positioned over any one of the tracks.

o The platter is spun at high speed.

o To read information, the arm is positioned over the correct track.

o When the data to be accessed passes under the head, the read or write operation is

performed.

2. A disk typically contains multiple platters (see Figure 10.2). The read-write heads of all

the tracks are mounted on a single assembly called a disk arm, and move together.

o Multiple disk arms are moved as a unit by the actuator.

o Each arm has two heads, to read disks above and below it.

o The set of tracks over which the heads are located forms a cylinder.

o This cylinder holds that data that is accessible within the disk latency time.

o It is clearly sensible to store related data in the same or adjacent cylinders.

http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Relational_databases
http://en.wikipedia.org/wiki/Relational_databases
http://en.wikipedia.org/wiki/Database_table
http://en.wikipedia.org/wiki/Object_database
http://en.wikipedia.org/wiki/Object-oriented_programming_language

45 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

3. Disk platters range from 1.8" to 14" in diameter, and 5"1/4 and 3"1/2 disks dominate due

to the lower cost and faster seek time than do larger disks, yet they provide high storage

capacity.

4. A disk controller interfaces between the computer system and the actual hardware of the

disk drive. It accepts commands to r/w a sector, and initiate actions. Disk controllers also

attach checksums to each sector to check read error.

5. Remapping of bad sectors: If a controller detects that a sector is damaged when the disk is

initially formatted, or when an attempt is made to write the sector, it can logically map the

sector to a different physical location.

6. SCSI (Small Computer System Interconnect) is commonly used to connect disks to PCs and

workstations. Mainframe and server systems usually have a faster and more expensive

bus to connect to the disks.

7. Head crash: why cause the entire disk failing (?).

8. A fixed dead disk has a separate head for each track -- very many heads, very expensive.

Multiple disk arms: allow more than one track to be accessed at a time. Both were used in

high performance mainframe systems but are relatively rare today.

4. Explain Join operation in detail (April 2012)

Join (SQL)

A JOIN clause in SQL combines records from two tables in a relational database and results in a

new ("temporary") table, also called a "joined table". Also you can think about the JOIN as a SQL

operation that relates tables by means of values that they share in common.

SQL specifies two types of joins: INNER and OUTER.

A programmer writes a join predicate to identify the records for JOINing. If the predicate

evaluates true, then the combined record is inserted into the joined (temporary) table; otherwise,

it does not contribute. Any predicate supported by SQL can become a join-predicate, for example,

WHERE-clauses. As a special case, a table (base table, view, or joined table) can join to itself in a

self-join.

Mathematically, a join consists of a relation composition. It provides the fundamental operation

in relational algebra and generalizes function composition.

Sample tables

All subsequent explanations on join types in this article make use of the following two tables. The

rows in these tables serve to illustrate the effect of different types of joins and join-predicates.

Department Table

DepartmentID DepartmentName

31 Sales

http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Table_%28database%29
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Predicate_%28computer_programming%29
http://en.wikipedia.org/wiki/Where_%28SQL%29
http://en.wikipedia.org/wiki/Relation_composition
http://en.wikipedia.org/wiki/Relational_algebra
http://en.wikipedia.org/wiki/Function_composition

46 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

33 Engineering

34 Clerical

35 Marketing

Employee Table

LastNam

e

DepartmentI

D

Rafferty 31

Jones 33

Steinberg 33

Robinson 34

Smith 34

Jasper 36

Note: The "Marketing" Department currently has no listed employees. On the other hand, the

employee "Jasper" has no link to any currently valid Department in the Department Table.

Inner join

An inner join essentially combines the records from two tables (A and B) based on a given join-

predicate. The SQL-engine computes the cross-product of all records in the tables. Thus,

processing combines each record in table A with every record in table B. Only those records in

the joined table that satisfy the join predicate remain. This type of join occurs the most commonly

in applications, and represents the default join-type.

SQL:2003 specifies two different syntactical ways to express joins. The first, called "explicit join

notation", uses the keyword JOIN, whereas the second uses the "implicit join notation". The

implicit join notation lists the tables for joining in the FROM clause of a SELECT statement, using

commas to separate them. Thus, it always computes a cross-join, and the WHERE clause may apply

additional filter-predicates. Those filter-predicates function comparably to join-predicates in the

explicit notation.

One can further classify inner joins as equi-joins, as natural joins, or as cross-joins.

http://en.wikipedia.org/wiki/Cross_product
http://en.wikipedia.org/wiki/SQL:2003

47 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

Programmers should take special care when joining tables on columns that can contain NULL

values, since NULL will never match any other value (or even NULL itself), unless the join

condition explicitly uses the IS NULL or IS NOT NULL predicates.

As an example, the following query takes all the records from the Employee table and finds the

matching record(s) in the Department table, based on the join predicate. The join predicate

compares the values in the DepartmentID column in both tables. If it finds no match (i.e., the

department-id of an employee does not match the current department-id from the Department

table), then the joined record remains outside the joined table, i.e., outside the (intermediate)

result of the join.

Example of an explicit inner join:

SELECT *

FROM employee

 INNER JOIN department

 ON employee.DepartmentID = department.DepartmentID

Example of an implicit inner join:

SELECT *

FROM employee, department

WHERE employee.DepartmentID = department.DepartmentID

Explicit Inner join result:

Employee.LastNa

me

Employee.Departme

ntID

Department.Department

Name

Department.Departme

ntID

Smith 34 Clerical 34

Jones 33 Engineering 33

Robinson 34 Clerical 34

Steinberg 33 Engineering 33

Rafferty 31 Sales 31

Notice that the employee "Jasper" and the department "Marketing" do not appear. Neither of

these have any matching records in the respective other table: no department has the department

ID 36 and no employee has the department ID 35. Thus, no information on Jasper or on Marketing

appears in the joined table.

Types of inner joins

Equi-join

An equi-join (also known as an equijoin), a specific type of comparator-based join, or theta join,

uses only equality comparisons in the join-predicate. Using other comparison operators (such as

http://en.wikipedia.org/wiki/Null_%28SQL%29
http://en.wikipedia.org/wiki/Equality_%28mathematics%29

48 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

<) disqualifies a join as an equi-join. The query shown above has already provided an example of

an equi-join:

SELECT *

FROM employee

 INNER JOIN department

 ON employee.DepartmentID = department.DepartmentID

The resulting joined table contains two columns named DepartmentID, one from table Employee

and one from table Department.

SQL:2003 does not have a specific syntax to express equi-joins, but some database engines

provide a shorthand syntax: for example, MySQL and PostgreSQL support USING(DepartmentID) in

addition to the ON ... syntax.

Natural join

A natural join offers a further specialization of equi-joins. The join predicate arises implicitly by

comparing all columns in both tables that have the same column-name in the joined tables. The

resulting joined table contains only one column for each pair of equally-named columns.

The above sample query for inner joins can be expressed as a natural join in the following way:

SELECT *

FROM employee NATURAL JOIN department

The result appears slightly different, however, because only one DepartmentID column occurs in

the joined table.

Employee.LastName DepartmentID Department.DepartmentName

Smith 34 Clerical

Jones 33 Engineering

Robinson 34 Clerical

Steinberg 33 Engineering

Rafferty 31 Sales

Using the NATURAL JOIN keyword to express joins can suffer from ambiguity at best, and leaves

systems open to problems if schema changes occur in the database. For example, the removal,

addition, or renaming of columns changes the semantics of a natural join. Thus, the safer

approach involves explicitly coding the join-condition using a regular inner join.

The Oracle database implementation of SQL selects the appropriate column in the naturally-

joined table from which to gather data. An error-message such as "ORA-25155: column used in

NATURAL join cannot have qualifier" may encourage checking and precisely specifying the

columns named in the query.

http://en.wikipedia.org/wiki/SQL:2003
http://en.wikipedia.org/wiki/MySQL
http://en.wikipedia.org/wiki/PostgreSQL
http://en.wikipedia.org/wiki/Oracle_database

49 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

Outer joins

An outer join does not require each record in the two joined tables to have a matching record in

the other table. The joined table retains each record—even if no other matching record exists.

Outer joins subdivide further into left outer joins, right outer joins, and full outer joins, depending

on which table(s) one retains the rows from (left, right, or both).

(For a table to qualify as left or right its name has to appear after the FROM or JOIN keyword,

respectively.)

No implicit join-notation for outer joins exists in SQL:2003.

Left outer join

The result of a left outer join for tables A and B always contains all records of the "left" table (A),

even if the join-condition does not find any matching record in the "right" table (B). This means

that if the ON clause matches 0 (zero) records in B, the join will still return a row in the result—

but with NULL in each column from B. This means that a left outer join returns all the values

from the left table, plus matched values from the right table (or NULL in case of no matching join

predicate).

For example, this allows us to find an employee's department, but still to show the employee even

when their department does not exist (contrary to the inner-join example above, where

employees in non-existent departments get filtered out).

Example of a left outer join(new):

SELECT *

FROM employee

 LEFT OUTER JOIN department

 ON employee.DepartmentID = department.DepartmentID

Employee.LastNa

me

Employee.Departme

ntID

Department.Department

Name

Department.Departme

ntID

Jones 33 Engineering 33

Rafferty 31 Sales 31

Robinson 34 Clerical 34

Smith 34 Clerical 34

Jasper 36 NULL NULL

Steinberg 33 Engineering 33

Right outer join

A right outer join closely resembles a left outer join, except with the tables reversed. Every record

from the "right" table (B) will appear in the joined table at least once. If no matching row from the

http://en.wikipedia.org/wiki/SQL:2003
http://en.wikipedia.org/wiki/Null_%28SQL%29

50 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

"left" table (A) exists, NULL will appear in columns from A for those records that have no match

in A.

A right outer join returns all the values from the right table and matched values from the left

table (NULL in case of no matching join predicate).

Example right outer join:

SELECT *

FROM employee

 RIGHT OUTER JOIN department

 ON employee.DepartmentID = department.DepartmentID

Employee.LastNa

me

Employee.Departme

ntID

Department.Department

Name

Department.Departme

ntID

Smith 34 Clerical 34

Jones 33 Engineering 33

Robinson 34 Clerical 34

Steinberg 33 Engineering 33

Rafferty 31 Sales 31

NULL NULL Marketing 35

Full outer join

A full outer join combines the results of both left and right outer joins. The joined table will

contain all records from both tables, and fill in NULLs for missing matches on either side.

Example full outer join:

SELECT *

FROM employee

 FULL OUTER JOIN department

 ON employee.DepartmentID = department.DepartmentID

Employee.LastNa

me

Employee.Departme

ntID

Department.Department

Name

Department.Departme

ntID

Smith 34 Clerical 34

Jones 33 Engineering 33

Robinson 34 Clerical 34

Jasper 36 NULL NULL

Steinberg 33 Engineering 33

Rafferty 31 Sales 31

http://en.wikipedia.org/wiki/Null_%28SQL%29

51 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

NULL NULL Marketing 35

Some database systems do not support this functionality directly, but they can emulate it through

the use of left and right outer joins and unions. The same example can appear as follows:

SELECT *

FROM employee

 LEFT JOIN department

 ON employee.DepartmentID = department.DepartmentID

UNION

SELECT *

FROM employee

 RIGHT JOIN department

 ON employee.DepartmentID = department.DepartmentID

WHERE employee.DepartmentID IS NULL

Implementation

Much work in database-systems has aimed at efficient implementation of joins, because relational

systems commonly call for joins, yet face difficulties in optimising their efficient execution. The

problem arises because (inner) joins operate both commutatively and associatively. In practice,

this means that the user merely supplies the list of tables for joining and the join conditions to

use, and the database system has the task of determining the most efficient way to perform the

operation. A query optimizer determines how to execute a query containing joins. A query

optimizer has two basic freedoms:

1. Join order: Because joins function commutatively, the order in which the system joins

tables does not change the final result-set of the query. However, join-order does have an

enormous impact on the cost of the join operation, so choosing the best join order

becomes very important.

2. Join method: Given two tables and a join condition, multiple algorithms can produce the

result-set of the join. Which algorithm runs most efficiently depends on the sizes of the

input tables, the number of rows from each table that match the join condition, and the

operations required by the rest of the query.

Many join-algorithms treat their inputs differently. One can refer to the inputs to a join as the

"outer" and "inner" join operands, or "left" and "right", respectively. In the case of nested loops,

for example, the database system will scan the entire inner relation for each row of the outer

relation.

One can classify query-plans involving joins as follows:

left-deep

using a base table (rather than another join) as the inner operand of each join in the plan

right-deep

http://en.wikipedia.org/wiki/Union_%28SQL%29
http://en.wikipedia.org/wiki/Commutative
http://en.wikipedia.org/wiki/Associative
http://en.wikipedia.org/wiki/Query_optimizer
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Table_%28database%29

52 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

using a base table as the outer operand of each join in the plan

bushy

neither left-deep nor right-deep; both inputs to a join may themselves result from joins

These names derive from the appearance of the query plan if drawn as a tree, with the outer join

relation on the left and the inner relation on the right (as convention dictates).

Join algorithms

Three fundamental algorithms exist for performing a join operation.

Nested loops

Use of nested loops produces the simplest join-algorithm. For each tuple in the outer join relation,

the system scans the entire inner-join relation and appends any tuples that match the join-

condition to the result set. Naturally, this algorithm performs poorly with large join-relations:

inner or outer or both. An index on columns in the inner relation in the join-predicate can

enhance performance.

The "block nested loops" (BNL) approach offers a refinement to this technique: for every block in

the outer relation, the system scans the entire inner relation. For each match between the current

inner tuple and one of the tuples in the current block of the outer relation, the system adds a

tuple to the join result-set. This variant means doing more computation for each tuple of the

inner relation, but far fewer scans of the inner relation.

Merge join

If both join relations come in order, sorted by the join attribute(s), the system can perform the

join trivially, thus:

1. For each tuple in the outer relation,

1. Consider the current "group" of tuples from the inner relation; a group consists of a

set of contiguous tuples in the inner relation with the same value in the join

attribute.

2. For each matching tuple in the current inner group, add a tuple to the join result.

Once the inner group has been exhausted, advance both the inner and outer scans

to the next group.

Merge joins offer one reason why many optimizers keep track of the sort order produced by

query plan operators—if one or both input relations to a merge join arrives already sorted on the

join attribute, the system need not perform an additional sort. Otherwise, the DBMS will need to

perform the sort, usually using an external sort to avoid consuming too much memory.

Hash join

A hash join algorithm can produce equi-joins. The database system pre-forms access to the tables

concerned by building hash tables on the join-attributes. The lookup in hash tables operates

http://en.wikipedia.org/wiki/Tree_data_structure
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Tuple
http://en.wikipedia.org/wiki/Index_%28database%29
http://en.wikipedia.org/wiki/Block_nested_loop
http://en.wikipedia.org/wiki/External_sort
http://en.wikipedia.org/wiki/Hash_table

53 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

much faster than through index trees. However, one can compare hashed values only for equality,

not for other relationships.

5. Write short notes on (April 2013)

(a) Assertions.

(b) Security and Authorization.

Assertions

 An assertion is a predicate expressing a condition that we wish the database always to

satisfy.

 Domain constraints and referential-integrity constraints are special forms of assertions.

 Assertions can be easily tested and can apply to a wide range of database applications.

 Examples are

 The sum of all loan amounts for each branch must be less than the sum of all

account balances at the branch.

 Every loan has at least one customer who maintains an account with a minimum

balance of $1000.00.

 An assertion in SQL takes the form (Syntax)

create assertion <assertion-name> check <predicate>

 Since SQL does not provide a “for all X, P(X)” construct (where P is a predicate), we are

forced to implement the construct by the equivalent “not exists X such that not P(X)”

construct, which can be written in SQL.

create assertion sum-constraint check

 (not exists (select * from branch

 where (select sum(amount) from loan

 where loan.branch-name = branch.branch-name)

 >= (select sum(balance) from account

 where account.branch-name = branch.branch-name)))

 When an assertion is created, the system tests it for validity. If the assertion is valid, then

any future modification to the database is allowed only if it does not cause that assertion

to be violated.

The high overhead of testing and maintaining assertions has led some system developers to omit

support for general assertions, or to provide specialized forms of assertions that are easier to test

(b)Security and Authorization

54 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

 Security of data is an important concept in DBMS because it is essential to safeguard the

data against any unwanted users.

 5 different levels of security

 DB System Level

 Operating System Level

 Network Level

 Physical Level

 Human Level

1. DB system level

 Authentication (verification) and authorization mechanism to allow specific users access

only to required data.

2. Operating System Level:

 Protection from invalid logins

 File-level access protection

 Protection from improper use of “superuser” authority,

 Protection from imprope use of privileged machine instructions.

3. Network level:

 Each site must ensure that it communicates with treated sites.

 Links must be protected from theft or modification of messages.

 Mechanisms Used:

 * Identification protocol (password based).

 * Cryptography.

4. Physical Level:

 * Protection of equipment from floods, power failure etc..

 * Protection of disks from theft etc…

 * Protection of network and terminal cables from wire tapes etc…

 Solution:

 * Physical security by locks etc…

 * Software techniques to detect physical security breaches.

 5. Human Level:

 Protection from stolen passwords etc…

 Solution:

 * Frequent change of passwords.

 * Data audits

55 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

 The data stored in the database need protection from unauthorized access and malicious

destruction or alteration, in addition to the protection against accidental introduction of

inconsistency that integrity constraints provide.

Security Violations

 Among the forms of malicious access are:

 Unauthorized reading of data (theft of information)

 Unauthorized modi .cation of data

 Unauthorized destruction of data

Database security refers to protection from malicious access. Absolute protection of the

database from malicious abuse is not possible, but the cost to the perpetrator can be made high

enough to deter most if not all attempts to access the database without proper authority.

To protect the database, we must take security measures at several levels:

 Database system .Some database-system users may be authorized to access only a

limited portion of the database.Other users may be allowed to issue queries,but may be

forbidden to modify the data.It is the responsibility of the database system to ensure that

these authorization restrictions are not violated.

 Operating system .No matter how secure the database system is,weakness in operating-

system security may serve as a means of unauthorized access to the database.

 Network .Since almost all database systems allow remote access through terminals or

networks,software-level security within the network software is as important as physical

security,both on the Internet and in private networks.

 Physical .Sites with computer systems must be physically secured against armed or

surreptitious entry by intruders.

 Human .Users must be authorized carefully to reduce the chance of any user giving access

to an intruder in exchange for a bribe or other favors.

Authorization:

 We may assign a user several forms of authorization on parts of the database. For

 example,

o Read authorization allows reading,but not modi .cation,of data.

o Insert authorization allows insertion of new data,but not modi .cation of existing data.

o Update authorization allows modi .cation,but not deletion,of data.

o Delete authorization allows deletion of data.

56 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

We may assign the user all,none,or a combination of these types of authorization.In addition to

these forms of authorization for access to data,we may grant a user authorization to modify the

database schema:

o Index authorization allows the creation and deletion of indices.

o Resource authorization allows the creation of new relations.

o Alteration authorization allows the addition or deletion of attributes in a relation.

o Drop authorization allows the deletion of relations.

Authorization in SQL

 The SQL language offers a fairly powerful mechanism for defining authorizations.

Privileges in SQL:

 The SQL standard includes the privileges delete ,insert ,select ,and update .

 The select privilege corresponds to the read privilege.

 SQL also includes a references privilege that permits a user/role to declare foreign keys

when creating relations.

 If the relation to be created includes a foreign key that references attributes of another

relation, the user/role must have been granted references privilege on those attributes.

The SQL data-definition language includes commands to grant and revoke privileges. The grant

statement is used to confer authorization. The basic form of this statement is:

The privilege list allows the granting of several privileges in one command.

 The following grant statement grants users U 1 ,U 2 ,and U 3 select authorization on

the account relation:

grant select on account to U 1 ,U 2 ,U 3

 In the below example, the grant statement gives users U 1 ,U 2 ,and U 3 update

authorization on the amount attribute of the loan relation:

grant update (amount)on loan to U 1 ,U 2 ,U 3

6. Describe about Normalization using functional dependency on (April 2013),(NOV 2015)

1. Another desirable property in database design is dependency preservation.

o We would like to check easily that updates to the database do not result in illegal

relations being created.

o It would be nice if our design allowed us to check updates without having to

compute natural joins.

grant <privilege list >on <relation name or view name >to <user/role list >

57 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

o To know whether joins must be computed, we need to determine what functional

dependencies may be tested by checking each relation individually.

o Let F be a set of functional dependencies on schema R.

o Let be a decomposition of R.

o The restriction of F to is the set of all functional dependencies in that include

only attributes of .

o Functional dependencies in a restriction can be tested in one relation, as they

involve attributes in one relation schema.

o The set of restrictions is the set of dependencies that can be checked

efficiently.

o We need to know whether testing only the restrictions is sufficient.

o Let .

o F' is a set of functional dependencies on schema R, but in general, .

o However, it may be that .

o If this is so, then every functional dependency in F is implied by F', and if F' is

satisfied, then F must also be satisfied.

o A decomposition having the property that is a dependency-preserving

decomposition.

58 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

18. Explain organization of records in files structure in detail (Apr 2011)

 We have several of the possible ways of organizing records in files are:

 Heap file organization: Any record can be placed anywhere in the file where there is

space for the record. There is no ordering of records. Typically, there is a single file for

each relation.

 Sequential file organization: Records are stored in sequential order, according to the

value of a “search key” of each record.

 Hashing file organization: A hash function is computed on some attribute of each

record. The result of the hash function specifies in which block of the file the record

should be placed.

 Generally, a separate file is used to store the records of each relation.

 However, in a clustering file organization, records of several different relations are

stored in the same file; further related records of the different relations are stored in

the same block, so that one I\o operation fetches related records from all the relations.

SEQUENTIAL FILE ORGANIZATION:

 A sequential file is designed for efficient processing of records in sorted order based

on some search-key.

 A search key is any attribute or set of attributes; it need not be the primary key, or

even a super key.

 To permit fat retrieval of records in search-key order, we chain together records by

pointers. The pointer in each record points to the next record in search-key

order,.

 A sequential file of account records taken from our banking example. In that example,

the records are stored in search-key order, using branch name as the search key.

59 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

 It is difficult, however, to maintain physical sequential order as records are inserted

and deleted, since it is costly to move many records as a result of a single insertion or

deletion.

 We can manage deletion by using pointer chains, as we saw previously.

 For insertion, we apply the following rules:

 Locate the record in the file that comes before the record to be inserted in search-key

order.

 If there is a free record (ie., space left after a deletion)within the same block as this

record, insert the new record there. Otherwise, insert the new record in an overflow

block. In either case, adjust the pointers so as to chain together the records in search-

key

order.

Sequential file after an insertion.

 The file after the insertion of the record (NorthTown,A-888,800). The structure in the

allows fast insertion of new records, but forces sequential file-processing applications

to process records in an order that does not match the physical order of the records.

 If relatively few records need to be stored in overflow blocks, this approach works

well.

 At this point, the file should be reorganized so that it is once again physically in

sequential order. Such reorganizations are costly, and must be done during times

when the system load is low..

 In the extreme case in which insertions rarely occur, it is possible always to keep the

file in physically sorted order. In such a case, the pointer field is not needed.

60 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

CLUSTERING FILE ORGANIZATION:

 Many relational-database systems store each relation in a separate file, so that they

can take full advantage of the file system, that the operating systems provides

 The tuples of a relation can be represented as fixed-length records and can be mapped

to simple file structure.

 The simple implementation of a relational database system is well suited to low-cost

database implementations as in, for example, embedded systems or portable devices.

 A simple file structure reduces the amount of code needed to implement the system.

 This simple approach to relational-database implementation becomes less satisfactory

as the size of the database increases.

However, many large-scalar database systems do not rely directly on the underlying

operating system for file management. Instead, one large operating-system file is

allocated to the database system. The database system stores all relations in this one file,

and manages the file itself.

To see the advantage of storing many relations in this one file, consider the following SQL

query for the bank database:

 select account-number, customer-name, customer-street, customer-city

 from depositer, customer

 where depositer.customer-name=customer.customer-name.

 This query computes a join of the depositer and customer relations.

 Thus, for each tuple of depositer, the system must locate the customer tuples with

same value for customer-name.

 Ideally, these records will be located with the help of indices.

 In the worst case, each record will reside on a different block, forcing us to done

block read for each record required by the query.

 DEPOSITOR and CUSTOMER Relation

61 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

 The above table file structure designed for efficient execution of queries involving

depositor &customer.

 The depositor tuples for each customer-name are stored near the customer tuple for

the corresponding customer-name.

 This structure mixes together tuples of two relations, but allows for efficient

processing of the join.

 When a tuple of the customer relation is read, the entire block contain that tuple is

copied from disk into main memory.

 Since the depositer tuples are stored on the disk near the customer-tuple, the block

containing the customer tuple contains tuples of the depositer relation needed to

process the query. If a customer has so many accounts that the depositor records do

not fit in one block, the remaining records appear on nearby blocks.

 A clustering file organization is a file organization, such as that illustrated in that

stores related records of two or more relations in each block. Our use of clustering has

enhanced processing of a particular join(depositer&cxustomer),but it results in

slowing processing of other types of query.

 Requires more block accesses the than it did in the scheme under which we stored

each relation in a separate file.

 select account-number,customer-name,customer-street,customer-city

 from depositer,customer

 where depositer.customer-name=customer.customer-name

 when clustering is to be used depends on the types of query that the database designer

believes to be most frequent. Careful use of clustering can produce significant

performance gains in query processing.

DATA-DICTIONARY STORAGE:

62 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

A relational-database system needs to maintain data about the relations, such as the

schema of the relations. The information is called the data dictionary, or system catalog.

Among the types of information that the system must store are these:

Clustering the Structure

Clustering the Structure with Pointer

 Names of the relations

 Names of the attributes of each relation

 Domains and lengths of attributes

 Names of vies defined on the database, and definitions of those views

 Integrity constraints(For example, key constraints)

In addition, many systems keep the following data on users of the system:

 Names of authorized users

 Accounting information about users.

 Passwords or other information used to authenticate users

Further, the database may store statistical and descriptive data about the relations such

as:

 Number of tuples in each relation

 Method of storage of each relation(for example, clustered or non-clustered)

The data dictionary may also note the storage organization (Sequential, hash or heap of

relations, and the location where each relation is stored:

63 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

 If relations are stored in operating system files, the dictionary would note the names of

the file(or files) containing each relation.

 If the database stores all relations in a single file, the dictionary may note the blocks

containing records of each relation in a data structure such as a linked list.

In indices, we shall need to store information about each index on each of the relations:

 Name of the index

 Name of the relation being indexed

 Attributes on which the index is defined

 Type of index formed.

All this information constitutes, in effect, a miniature database. Some database systems

store this information by using special-purpose data structure and code. It is generally-

preferable to store the data about the database in the database itself.

The exact choice of how to represent system data by relations must be made by the

system designers. One possible representation, with primary keys underlined is:

 Relation-metadata(relation-name, number of attributes, storage-

organizatin,location)

 Attribute-metadata(attribute-name, relation-name, domain-type, position, length)

 User-metadata(user-name, encrypted-password, group)

 Index-metadata(index-name, relation-name, index-type, index-attribute)

 View-metadata(view-name, definition)

19. What is meant by Hash function? Also discuss about dynamic hashing

Hash Functions {NOV 2015]

1. A good hash function gives an average-case lookup that is a small constant,

independent of the number of search keys.

2. We hope records are distributed uniformly among the buckets.

3. The worst hash function maps all keys to the same bucket.

4. The best hash function maps all keys to distinct addresses.

5. Ideally, distribution of keys to addresses is uniform and random.

6. Suppose we have 26 buckets, and map names beginning with ith letter of the

alphabet to the ith bucket.

o Problem: this does not give uniform distribution.

o Many more names will be mapped to ``A'' than to ``X''.

64 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

o Typical hash functions perform some operation on the internal binary

machine representations of characters in a key.

o For example, compute the sum, modulo of buckets, of the binary

representations of characters of the search key.

o See Figure 11.18, using this method for 10 buckets (assuming the ith

character in the alphabet is represented by integer i).

Handling of bucket overflows

1. we handle bucket overflow by using overflow buckets.

2. All the overflow buckets of a given bucket are chained together in a linked list , as in

fig 12.22

65 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

3. Open hashing occurs where records are stored in different buckets. Compute the

hash function and search the corresponding bucket to find a record.

4. Closed hashing occurs where all records are stored in one bucket. Hash function

computes addresses within that bucket. (Deletions are difficult.) Not used much in

database applications.

5. Drawback to our approach: Hash function must be chosen at implementation

time.

o Number of buckets is fixed, but the database may grow.

o If number is too large, we waste space.

o If number is too small, we get too many ``collisions'', resulting in records of

many search key values being in the same bucket.

o Choosing the number to be twice the number of search key values in the file

gives a good space/performance tradeoff.

Hash Indices

1. A hash index organizes the search keys with their associated pointers into a hash

file structure.

2. We apply a hash function on a search key to identify a bucket, and store the key and

its associated pointers in the bucket (or in overflow buckets).

3. Strictly speaking, hash indices are only secondary index structures, since if a file

itself is organized using hashing, there is no need for a separate hash index

structure on it.

66 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

DYNAMIC HASHING

1. As the database grows over time, we have three options:

o Choose hash function based on current file size. Get performance

degradation as file grows.

o Choose hash function based on anticipated file size. Space is wasted initially.

o Periodically re-organize hash structure as file grows. Requires selecting new

hash function, recomputing all addresses and generating new bucket

assignments. Costly, and shuts down database.

2. Some hashing techniques allow the hash function to be modified dynamically to

accommodate the growth or shrinking of the database. These are called dynamic

hash functions.

o Extendable hashing is one form of dynamic hashing.

o Extendable hashing splits and coalesces buckets as database size changes.

o This imposes some performance overhead, but space efficiency is

maintained.

o As reorganization is on one bucket at a time, overhead is acceptably low.

3. How does it work?

67 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

Figure 12.4 General extendable hash structure.

o We choose a hash function that is uniform and random that generates values

over a relatively large range.

o Range is b-bit binary integers (typically b=32).

o is over 4 billion, so we don't generate that many buckets!

o Instead we create buckets on demand, and do not use all b bits of the hash

initially.

.

o The i bits are used as an offset into a table of bucket addresses.

o Value of i grows and shrinks with the database.

o Figure 12.4 shows an extendable hash structure.

o Note that the i appearing over the bucket address table tells how many bits

are required to determine the correct bucket.

o It may be the case that several entries point to the same bucket.

o All such entries will have a common hash prefix, but the length of this prefix

may be less than i.

o So we give each bucket an integer giving the length of the common hash

prefix.

o The integer associated with bucket j is shown as

o Number of bucket entries pointing to bucket j is then .

4. To find the bucket containing search key value :

o Compute .

o Take the first i high order bits of .

o Look at the corresponding table entry for this i-bit string.

o Follow the bucket pointer in the table entry.

68 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

5. We now look at insertions in an extendable hashing scheme.

o Follow the same procedure for lookup, ending up in some bucket j.

o If there is room in the bucket, insert information and insert record in the file.

o If the bucket is full, we must split the bucket, and redistribute the records.

o If bucket is split we may need to increase the number of bits we use in the

hash.

6. Two cases exist:

1. If , then only one entry in the bucket address table points to bucket j.

o Then we need to increase the size of the bucket address table so that we can

include pointers to the two buckets that result from splitting bucket j.

o We increment i by one, thus considering more of the hash, and doubling the

size of the bucket address table.

o Each entry is replaced by two entries, each containing original value.

o Now two entries in bucket address table point to bucket j.

o We allocate a new bucket z, and set the second pointer to point to z.

o Set and to i.

o Rehash all records in bucket j which are put in either j or z.

o Now insert new record.

o It is remotely possible, but unlikely, that the new hash will still put all of the

records in one bucket.

o If so, split again and increment i again.

2. If , then more than one entry in the bucket address table points to bucket j.

o Then we can split bucket j without increasing the size of the bucket address

table

o Note that all entries that point to bucket j correspond to hash prefixes that

have the same value on the leftmost bits.

o We allocate a new bucket z, and set and to the original value plus 1.

o Now adjust entries in the bucket address table that previously pointed to

bucket j.

o Leave the first half pointing to bucket j, and make the rest point to bucket z.

o Rehash each record in bucket j as before.

o Reattempt new insert.

7. Note that in both cases we only need to rehash records in bucket j.

69 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

8. Deletion of records is similar. Buckets may have to be coalesced, and bucket

address table may have to be halved.

9. Insertion is illustrated for the example deposit file.

o 32-bit hash values on bname are shown in Figure

. An initial empty hash structure is shown in Figure

o We insert records one by one.

o We (unrealistically) assume that a bucket can only hold 2 records, in order to

illustrate both situations described.

o As we insert the Perryridge and Round Hill records, this first bucket becomes

full.

o When we insert the next record (Downtown), we must split the bucket.

o Since , we need to increase the number of bits we use from the hash.

o We now use 1 bit, allowing us buckets.

o This makes us double the size of the bucket address table to two entries.

70 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

o We split the bucket, placing the records whose search key hash begins with 1

in the new bucket, and those with a 0 in the old bucket (Figure 11.23).

o Next we attempt to insert the Redwood record, and find it hashes to 1.

o That bucket is full, and .

o So we must split that bucket, increasing the number of bits we must use to 2.

o This necessitates doubling the bucket address table again to four entries

(Figure 12.28).

o We rehash the entries in the old bucket.

o We continue on for the deposit records of Figure 12.25, obtaining the

extendable hash structure of Figure 12.31

.

Advantages:

o Extendable hashing provides performance that does not degrade as the file

grows.

71 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

o Minimal space overhead - no buckets need be reserved for future use. Bucket

address table only contains one pointer for each hash value of current prefix

length.

Disadvantages:

o Extra level of indirection in the bucket address table

o Added complexity

20 .Explain B-Tree index files in detail (NOV 2010)

B TREE INDEX FILES

1. Primary disadvantage of index-sequential file organization is that performance

degrades as the file grows. This can be remedied by costly re-organizations.

2. B -tree file structure maintains its efficiency despite frequent insertions and

deletions. It imposes some acceptable update and space overheads.

3. A B -tree index is a balanced tree in which every path from the root to a leaf is of

the same length.

4. Each nonleaf node in the tree must have between and n children, where n is

fixed for a particular tree.

Structure of a B -Tree

1. A B -tree index is a multilevel index but is structured differently from that of multi-

level index sequential files.

A typical node (Figure 12.6) contains up to n-1 search key values ,

and n pointers . Search key values in a node are kept in sorted order.

2. For leaf nodes, () points to either a file record with search key

value , or a bucket of pointers to records with that search key value. Bucket

structure is used if search key is not a primary key, and file is not sorted in search

key order.

Pointer (nth pointer in the leaf node) is used to chain leaf nodes together in linear

order (search key order). This allows efficient sequential processing of the file.

The range of values in each leaf do not overlap.

3. Non-leaf nodes form a multilevel index on leaf nodes.

http://www.cs.sfu.ca/CC/354/zaiane/material/notes/Chapter11/node10.html#figx1bplustreenode

72 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

A non-leaf node may hold up to n pointers and must hold pointers. The

number of pointers in a node is called the fan-out of the node.

Consider a node containing m pointers. Pointer () points to a subtree

containing search key values and . Pointer points to a subtree

containing search key values . Pointer points to a subtree containing

search key values .

4. Figures 11.7 (textbook Fig. 11.8) and textbook Fig. 11.9 show B -trees for the

deposit file with n=3 and n=5.

Queries on B -Trees

1. Suppose we want to find all records with a search key value of k.

o Examine the root node and find the smallest search key value .

o Follow pointer to another node.

o If follow pointer .

o Otherwise, find the appropriate pointer to follow.

o Continue down through non-leaf nodes, looking for smallest search key value

>k and following the corresponding pointer.

o Eventually we arrive at a leaf node, where pointer will point to the desired

record or bucket.

2. In processing a query, we traverse a path from the root to a leaf node. If there are K

search key values in the file, this path is no longer than .

This means that the path is not long, even in large files. For a 4k byte disk block

with a search-key size of 12 bytes and a disk pointer of 8 bytes, n is around 200. If n

=100, a look-up of 1 million search-key values may take nodes

http://www.cs.sfu.ca/CC/354/zaiane/material/notes/Chapter11/node10.html#figx19btree

73 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

to be accessed. Since root is in usually in the buffer, so typically it takes only 3 or

fewer disk reads.

Updates on B -Trees

1. Insertions and Deletions:

Insertion and deletion are more complicated, as they may require splitting or

combining nodes to keep the tree balanced. If splitting or combining are not

required, insertion works as follows:

o Find leaf node where search key value should appear.

o If value is present, add new record to the bucket.

o If value is not present, insert value in leaf node (so that search keys are still

in order).

o Create a new bucket and insert the new record.

If splitting or combining are not required, deletion works as follows:

o Deletion: Find record to be deleted, and remove it from the bucket.

o If bucket is now empty, remove search key value from leaf node.

2. Insertions Causing Splitting:

When insertion causes a leaf node to be too large, we split that node. In Figure 11.8,

assume we wish to insert a record with a bname value of ``Clearview''.

o There is no room for it in the leaf node where it should appear.

o We now have n values (the n-1 search key values plus the new one we wish

to insert).

o We put the first values in the existing node, and the remainder into a

new node.

o Figure 11.10 shows the result.

o The new node must be inserted into the B -tree.

o We also need to update search key values for the parent (or higher) nodes of

the split leaf node. (Except if the new node is the leftmost one)

o Order must be preserved among the search key values in each node.

o If the parent was already full, it will have to be split.

o When a non-leaf node is split, the children are divided among the two new

nodes.

o In the worst case, splits may be required all the way up to the root. (If the

root is split, the tree becomes one level deeper.)

74 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

o Note: when we start a B -tree, we begin with a single node that is both the

root and a single leaf. When it gets full and another insertion occurs, we split

it into two leaf nodes, requiring a new root.

3. Deletions Causing Combining:

Deleting records may cause tree nodes to contain too few pointers. Then we must

combine nodes.

o If we wish to delete ``Downtown'' from the B -tree of Figure 11.11, this

occurs.

o In this case, the leaf node is empty and must be deleted.

o If we wish to delete ``Perryridge'' from the B -tree of Figure 11.11, the

parent is left with only one pointer, and must be coalesced with a sibling

node.

o Sometimes higher-level nodes must also be coalesced.

o If the root becomes empty as a result, the tree is one level less deep (Figure

11.13).

o Sometimes the pointers must be redistributed to keep the tree balanced.

o Deleting ``Perryridge'' from Figure 11.11 produces Figure 11.14.

4. To summarize:

o Insertion and deletion are complicated, but require relatively few operations.

o Number of operations required for insertion and deletion is proportional to

logarithm of number of search keys.

o B -trees are fast as index structures for database.

B -Tree File Organization

1. The B -tree structure is used not only as an index but also as an organizer for

records into a file.

2. In a B -tree file organization, the leaf nodes of the tree store records instead of

storing pointers to records, as shown in Fig. 11.17.

3. Since records are usually larger than pointers, the maximum number of records

that can be stored in a leaf node is less than the maximum number of pointers in a

non leaf node.

4. However, the leaf node are still required to be at least half full.

5. Insertion and deletion from a B -tree file organization are handled in the same way

as that in a B -tree index.

75 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

6. When a B -tree is used for file organization, space utilization is particularly

important. We can improve the space utilization by involving more sibling nodes in

redistribution during splits and merges.

7. In general, if m nodes are involved in redistribution, each node can be guaranteed

to contain at least entries. However, the cost of update becomes higher

as more siblings are involved in redistribution.

B-TREE INDEX FILES

1. B-tree indices are similar to B -tree indices.

o Difference is that B-tree eliminates the redundant storage of search key

values.

o In B -tree, some search key values appear twice.

o A corresponding B-tree of Figure 11.18 allows search key values to appear

only once.

o Thus we can store the index in less space.

 Leaf and non leaf node of a B-tree.

2. Advantages:

 Generally, the structural simplicity of B -tree is preferred.

 Lack of redundant storage (but only marginally different).

 Some searches are faster (key may be in non-leaf node).

3. Disadvantages:

o Leaf and non-leaf nodes are of different size (complicates storage)

Deletion may occur in a non-leaf node (more complicated)

76 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

UNIVERSITY QUESTIONS

1. Explain 4 NF and 5 NF with examples (11 marks)APRIL 2010, (Question Number:14).

2. Discuss Assertions, Triggers, Authentication (11 Marks) APRIL 2010, (Question Number:6 and

7).

3. Explain any one database system of your own with normalization (11 marks) NOV 2010,

(Question Number:10).

4. Explain referential integrity in detail (11 marks) NOV 2010, (Question Number:10).

5. Explain database design process in detail. (11 marks)APRIL 2011, (Question Number:15).

6. Explain Authorization in SQL with example-Refer First unit notes11 marks (APRIL 2011,

(Question Number:5)).

7. Write about ER Diagrams(11 marks)” Refer First unit notes”11 marks APRIL 2012,NOV

2012,APR 2014, NOV 2015(Question Number:15)

8. Explain any two normal forms in detail. 11 marks) APRIL 2012, (Question Number: 10).

9. Explain Decomposition using Functional Dependencies.(11 marks) NOV 2012, (Question

Number:10).

10. Explain 3 NF and 4 NF with examples (11 marks) APR 2014, (Question Number:13,14).

11. Explain the Fundamentals of database design and ER model. NOV 2014, (Question Number:9).

12. Explain in details about application design and development. Nov2014, (Question

Number:15).

13. Discuss the various concepts of ER Model with an example. Apr 2015, (Question

Number:16).

14. Explain about Database Design Process. Apr 2015, (Question Number:17).

15. Explain organization of records in files structure in detail. Apr 2011, (Question

Number:18).

16. Explain B-Tree index files in detail. NOV 2010, (Question Number:20)

17. What is meant by Hash function? Also discuss about dynamic hashing

Hash Functions {NOV 2015](Page 66) (Question Number:19)

1 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

UNIT -III

 Relational Database Design: Features of Good Relational Designs – Atomic Domains and First Normal Form –

Second Normal Form – Decomposition Using Functional Dependencies – Functional Dependency Theory –

Algorithms for decomposition – Decomposition Using Multi-valued Dependencies – More Normal Forms –

Database – Design Process – Modeling Temporal Data

.

TWO MARK
1. What is normalization? (NOV 2015)

The main goal of normalization is to reduce redundant data. Normalization is based on

functional dependencies.

2. What is First Normal Form?(NOV 2010)

First normal form is also called as flat file. There are no composite attributes and every

attribute is single and describe one property.

3. What is functional dependencies?(NOV 2015)

Functional dependencies play key role in differentiating good database designs from bad

database design. A functional dependency is a type of constraint that is a generalization of the

notion of key.

4. What is decomposition?

The process of decomposing a relation schema that has many attributes into several schemas

with fewer attributes is called decomposition.

5. What is Boyce Codd Normal Form? APRIL 2014

A relation schema R is in BCNF with respect to a set F of functional dependencies if, for all

functional dependencies in F+ of the form α→β, where α C R and β C R, atleast one of the

following holds:

 α→β is a trivial functional dependency.

 α is a superkey for schema R.

6. What is Third Normal Form?

2 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

 A relation is said to be Third normal form where all attributes in a relation tuple are not only

functionally dependent on key attributes but also dependent on non key attributes.

7. What is Second Normal Form?

A relation is said to be in Second normal form, if it is in first normal form and non key attributes

are functionally dependent on the key attributes.

8. What is Fourth Normal Form?

This schema is called as non- BCNF schema. A relation defined with multi valued dependency

which is a new form of constraint is called forth normal form. It is more restrictive than BCNF.

9. What is multi valued dependency?

Multivalued dependencies are referred to as tuple generating dependencies. It do not rule out

existence of certain tuples, instead they require other tuples of certain form be present in the

relation.

10. Comparison of BCNF and 3CNF.

 3CNF BCNF
 3NF: For every functional

dependency X->Y in a set F of
functional dependencies over
relation R, either: Y is a subset of X
or,X is a superkey of R, or Y is a
subset of K for some key K of R
N.b., no subset of a key is a key.

 It is always possible to obtain a
3NF design without sacrificing
lossless-join or dependency
preservation.

 If we do not eliminate all
transitive dependencies, we may
need to use null values to
represent some of the meaningful
relationships.

 Repetition of information occurs.

 BCNF: For every functional dependency X->Y
in a set F of functional dependencies over
relation R, either:

Y is a subset of X or,
 X is a superkey of R

 If we cannot check for dependency
preservation eciently, we either pay a high
price in system performance or risk the
integrity of the data.

 The limited amount of redundancy in 3NF is
then a lesser evil.

11. Define Functional Dependencies.

Let X R and Y R, then the Functional dependency (FD) X Y holds on R if, in any relation

r(R), for all pairs of tuples t1 and t2 in r such that t1[X] = t2[X], it is also the case that t1[Y] =

t2[Y].

12. Define Closure of Functional Dependency.

3 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

Let F be a set of FDs, then the closure of F is the set of all FDs logically implied by F. It is

denoted by F+

13. Define normalization of data and denormalization.

Normalization:

Process of decomposing an unsatisfactory relation schema into satisfactory relation

schemas by breaking their attributes, so as to satisfy the desirable properties. Denormalization:

Process of storing the join of higher normal form relations as base relation, which is in the lower

normal form.

14. Explain shortly the four properties or objectives of normalization.

 To minimize redundancy

 To minimize insertion, deletion, and updating anomalies.

 Lossless-join or non-additive join decomposition

 Dependency preservation

15. Define Partial Functional Dependency.

A FD x y is a partial dependency if some attribute A x can be removed from x and

the dependency still holds; ie., for some A x, (x – { A }) y.

16. Define Boyce codd normal form

A relation schema R is in BCNF with respect to a set F of functional+ dependencies if,

for all functional dependen cies in F of the form. a->ß, where a

17. List the disadvantages of relational database system

 Repetition of data

 Inability to represent certain information.

18. What is first normal form?

The domain of attribute must include only atomic (simple, indivisible) values.

19. What are the uses of functional dependencies?

To test relations to see whether they are legal under a given set of functional

dependencies. To specify constraints on the set of legal relations.

20. Explain trivial dependency?

Functional dependency of the form a ß is trivial if ß C a. Trivial functional

dependencies are satisfied by all the relations.

21. What are axioms?

Axioms or rules of inference provide a simpler technique for reasoning about functional

dependencies.

4 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

22. What is meant by computing the closure of a set of functional dependency?

+ The closure of F denoted b y F is the set of functional dependencies logically implied by F.

23. What is meant by normalization of data?

It is a process of analyzing the given relation schemas based on their Functional

Dependencies (FDs) and primary key to achieve the properties Minimizing redundancy

Minimizing insertion, deletion and updating anomalies

24. Explain the desirable properties of decomposition.

 a) Lossless-join decomposition b) Dependency preservation c) Repetition of information

25. What is 2NF?

A relation schema R is in 2NF if it is in 1NF and every non-prime attribute A in R is fully

functionally dependent on primary key.

26. Define Data storage?

It stores application data in database. The place where data is backed up.

27. Define Access time and seek time?

 It is the time for when a read or write request is issued to when data transfer begins. The

time for repositioning the arm is called the seek time.

28. Define the average seek time?

 It is the average of the seek times, measured over a sequence of a random requests.

29. Define rotational latency time?

If the head has reached the desired track, the time spent waiting for the sector to be accessed

appear under the head is called rotational latency time.

30. Define MTTF?

It is used to measure the reliability of the disk. The mean time to failure of a disk is the amount of

time that, on average, that expect the system to run continuously without any failure.

31. What is meant by RAID?

 A variety of disk organization techniques, collectively called Redundant Array Of

Independent Disks have been proposed to achieve improved performance and reliability.

32. Define Redundancy?

To store extra information that is not needed normally, but that can be used in the event of

failure of the disk to rebuild the lost information.

33. What is meant by mirroring?

The simplest approach to introducing redundancy is to duplicate every disk . This technique is

called mirroring or shadowing.

34. What is Mean time to repair?

5 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

 It is the time it takes to replace the failed disk and to restore the data on it is called as

mean time to repair.

35. Define striping?

In multiple disk , it is used to improve the transfer rate by striping data across multiple disk . It

can be done by 2 methods.

 1.Bit level Striping

 2.Block level striping

36. What is bit level striping and block level striping?

Bit level striping:

Data striping consists of splitting the bits of each byte across multiple disk.

Block level striping:

Strips block across multiple disks. It treats the array of disks as a single large disk , and

gives blocks logical number.

37. What are the different levels of RAID?

 RAID level 0, RAID level 1, RAID level 2, RAID level 3, RAID level 4, RAID level 5 ,RAID level 6.

38. Define RAID level 0?

 It refers to disk arrays with striping at the level of blocks but without any redundancy.

39. Define RAID level 1 and level 2?

RAID level 1: It refers disk mirroring with block striping.

RAID level 2: It is known as memory-style error-correcting-code (ECC) organization , Employs

parity bit.

40. Define RAID level 3 and RAID level 4 :

RAID level 3: It is bit interleaved parity organization. It supports a lower number of IO operations per

second.

RAID level 4: It is block interleaved parity organization , uses block level striping like RAID 0 and in

addition keeps a parity block on a separate disk for corresponding block from N other disk.

41. Define RAID level 5 and RAID level 6:

RAID level 5: It is block interleaved distributed parity , improves on level 4 by partitioning data and

parity among all N+1 disks , instead of storing data in N is disk and parity in one disk.

RAID level 6: It is P+Q redundancy scheme , is much like RAID level 5 but stores extra redundant

information to guard against multiple disk failures.

42. What is mean by FILE?

 File is organized logically as a sequence of records . A record is a collection of fields.

43. Define Fixed length records?

6 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

Blocks which are of fixed size is determined by the physical properties of the disk and by the

operating system record sizes vary.

44. Define Variable length records?

 It arises in database systems in several ways .

 1. Storage of multiple record types in a file.

 2. Record type that allows variable lengths for one or more fields.

 3. Record types that allow repeating fields, such as arrays or multiset.

45. Define Slotted _page structure?

It is commonly used for organizing records within a block. The actual records are allocated

contiguously in the block.

46. Define BLOB and CLOB?

 BLOB: Binary large object

 CLOB: Character large object.

47. What is heap file organization?

Any record can be placed anywhere in the file where there is a space for the record .there is no

ordering if records.

48. Define sequential file organization?

 Records are stored in the sequential order, according to the value of search key of each record.

49. Define hashing file organization?

A hash function is computed on some attributes of each records. The result of the hash function

specifies in which block of the file the record should be placed.

50. Define Search key?

 A search key is any attribute or set of attribute , it need not be the primary key or a even a super

key.

51. Define data dictionary?

The relational database system needs to maintain data about the relations, such as schema of the

relations. This information is called the data dictionary or system catalog.

52. What factors must be taken care while choosing RAID level?

 Monetary cost of extra disk storage requirements

 Performance requirements in terms of number of I/O operations

 Performance when a disk has failed

 Performance during rebuild

53. What is jukeboxes?

7 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

Jukeboxes are devices that store a large number of optical disk and load them automatically on

demand to one of the small number drives.

54. Define hot swapping?

The faulty disks can be removed and replaced by the new ones without turning power off. Hot

swapping the mean time to repair.

55. What are the buffer manager virtual schemes?

 Buffer replacement strategy

 Pinned blocks

 Forced output of blocks

56. Why is multiple key access used?

In certain type of queries it is advantageous to use multiple indices if they exist ,or to use an

index built on a multi-attribute search key.

57. Define over flow chaining?

If a record must be inserted into a bucket b and b is already full, the system provides another

overflow bucket for b and insert the record into the over flow bucket .if the over flow bucket is also

full the system provides another over flow bucket and so on. All the over flow buckets are chained

together in a linked list. Such a link list is called over flow chaining.

58. Mention about sparse index (April/May 2012)

An index record appears for only some of the search key values in a file.

59. What is meant by Dependency preservation? (April 2013)

Another desirable property in database design is dependency preservation.

 We would like to check easily that updates to the database do not result in illegal relations being

created.

 It would be nice if our design allowed us to check updates without having to compute natural

joins.

 To know whether joins must be computed, we need to determine what functional dependencies

may be tested by checking each relation individually.

 Let F be a set of functional dependencies on schema R.

 Let be a decomposition of R.

60. State the conditions for a relation R to be in 3NF (April 2013)

A relation R id in 3NF if and only if for every non trivial FD A ->B for R, one of the following two

conditions are true:

 A is a super key for R

8 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

 B is an attribute in some keys

61. When we say a relation is in first Normal form? (Nov 2010)

1NF A relation R is in first normal form (1NF) if and only if all underlying domains contain atomic

values only.

Example: 1NF but not 2NF

FIRST (supplier_no, status, city, part_no, quantity)

Functional Dependencies:

(supplier_no, part_no) quantity

(supplier_no) status

(supplier_no) city

city status (Supplier's status is determined by location)

9 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

11 MARKS

10.Explain in detail about Relational database design? (11 Marks)

First Normal Form

A domain is atomic if elements of the domain are considered to be indivisible units. We say that a

relation schema R is in first normal form (1NF) if the domains of all attributes of R are atomic. A set of

names is an example of a nonatomic value. For example, if the schema of a relation employee included

an attribute childrenwhose domain elements are sets of names, the schema would not be in first normal

form. Composite attributes, such as an attribute address with component attributes street and city, also

have nonatomic domains. Integers are assumed to be atomic, so the set of integers is an atomic domain;

the set of all sets of integers is a nonatomic domain. The distinction is that we do not normally consider

integers to have subparts, but we consider sets of integers to have subparts namely, the integers

making up the set.

The domain of all integers would be nonatomic if we considered each integer to be an ordered list of

digits.

Some types of nonatomic values can be useful, although they should be used with care. For example,

composite valued attributes are often useful, and set valued attributes are also useful in many cases,

which is why both are supported in the E-R model.

Pitfalls in Relational-Database Design

Among the undesirable properties that a bad design may have are:

 Repetition of information

 Inability to represent certain information

Suppose the information concerning loans is kept in one single relation, lending, which is defined over

the relation schema

Lending-schema = (branch-name, branch-city, assets, customer-name,

loan-number, amount)

A tuple t in the lending relation has the following intuitive meaning:

 t[assets] is the asset figure for the branch named t[branch-name].

10 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

 t[branch-city] is the city in which the branch named t[branch-name] is located.

 t[loan-number] is the number assigned to a loan made by the branch named t[branch-name] to

the customer named t[customer-name].

 t[amount] is the amount of the loan whose number is t[loan-number].

Suppose that we wish to add a new loan to our database. Say that the loan is made by the Perryridge

branch to Adams in the amount of $1500. Let the loan-number be L-31. In our design, we need a tuple

with values on all the attributes of Lendingschema. Thus, we must repeat the asset and city data for the

Perryridge branch, and must add the tuple

(Perryridge, Horseneck, 1700000, Adams, L-31, 1500)

Another problem with the Lending-schema design is that we cannot represent directly the information

concerning a branch (branch-name, branch-city, assets) unless there exists at least one loan at the

branch. This is because tuples in the lending relation require values for loan-number, amount, and

customer-name. One solution to this problem is to introduce null values, as we did to handle updates

through views.

Sample lending relation.

Functional Dependencies

Basic Concepts

11 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

Functional dependencies are constraints on the set of legal relations. They allow us to express facts

about the enterprise that we are modeling with our database.

Let R be a relation schema. A subset K of R is a superkeyof R if, in any legal relation r(R), for all pairs t1

and t2 of tuples in r such that t1 _= t2, then t1[K] _= t2[K]. That is, no two tuples in any legal relation

r(R) may have the same value on attribute set K. The notion of functional dependency generalizes the

notion of superkey. Consider a relation schema R, and let α ⊆R and β ⊆R. The functional dependency

α→β

holds on schema R if, in any legal relation r(R), for all pairs of tuples t1 and t2 in r such that t1[α] =

t2[α], it is also the case that t1[β] = t2[β].

Using the functional-dependency notation, we say that K is a superkey of R if K → R. That is, K is a

superkey if, whenever t1[K] = t2[K], it is also the case that t1[R] = t2[R] (that is, t1 = t2).Functional

dependencies allow us to express constraints that we cannot express with superkeys. Consider the

schema

Loan-info-schema = (loan-number, branch-name, customer-name, amount)

which is simplification of the Lending-schema that we saw earlier. The set of functional dependencies

that we expect to hold on this relation schema is

loan-number→amount

loan-number→branch-name

We shall use functional dependencies in two ways:

1. To test relations to see whether they are legal under a given set of functional dependencies. If a

relation r is legal under a set F of functional dependencies, we say that r satisfies F.

2. To specify constraints on the set of legal relations. We shall thus concern ourselves with only

those relations that satisfy a given set of functional dependencies. If we wish to constrain

ourselves to relations on schema R that satisfy a set F of functional dependencies, we say that F

holds on R.

To distinguish between the concepts of a relation satisfying a dependency and a dependency holding on

a schema, we return to the banking example. In the loan relation (on Loan-schema) we see that the

dependency loannumber→ amount is satisfied. In contrast to the case of customer-city and

customerstreetin Customer-schema.

12 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

The customer relation.

The loan relation.

In the branch relation of Figure 7.5, we see that branch-name → assets is satisfied, as is assets →

branch-name. We want to require that branch-name → assets hold on Branch-schema. However, we do

not wish to require that assets → branch-name hold, since it is possible to have several branches that

have the same asset value.

The branch relation.

 On Branch-schema: branch-name →branch-city

13 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

branch-name→assets

 On Customer-schema:customer-name→ customer-city

customer-name→ customer-street

 On Loan-schema: loan-number → amount

loan-number→ branch-name

 On Borrower-schema: No functional dependencies

 On Account-schema: account-number → branch-name

account-number→ balance

 On Depositor-schema: No functional dependencies

Closure of a Set of Functional Dependencies

More formally, given a relational schema R, a functional dependency f on R is logically implied by a set

of functional dependencies F on R if every relation instancer(R) that satisfies F also satisfies f.

Suppose we are given a relation schema R = (A, B, C, G, H, I) and the set of functional dependencies

A →B

A →C

CG→ H

CG→ I

B → H

The functional dependency

A→ H

is logically implied. That is, we can show that, whenever our given set of functional dependencies holds

on a relation, A→H must also hold on the relation. Suppose that t1 and t2 are tuples such that

t1[A] = t2[A]

Since we are given that A→B, it follows from the definition of functional dependency that

t1[B] = t2[B]

Then, since we are given that B → H, it follows from the definition of functional dependency that

t1[H] = t2[H]

14 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

Therefore, we have shown that, whenever t1 and t2 are tuples such that t1[A] = t2[A], it must be that

t1[H] = t2[H]. But that is exactly the definition of A→ H.

We can use the following three rules to find logically implied functional dependencies. By applying

these rules repeatedly, we can find all of F+, given F. This collection of rules is called Armstrong’s

axioms in honor of the person who first proposed it.

• Reflexivity rule. If α is a set of attributes and β ⊆α, then α →β holds.

• Augmentation rule. If α → β holds and γ is a set of attributes, then γα → γβ holds.

• Transitivity rule. If α →β holds and β → γ holds, then α → γ holds.

Although Armstrong’s axioms are complete, it is tiresome to use them directly for the computation of

F+. To simplify matters further, we list additional rules. It is possible to use Armstrong’s axioms to

prove that these rules are correct .

• Union rule. If α → β holds and α → γ holds, then α →βγ holds.

• Decomposition rule. If α →βγ holds, then α → β holds and α →γ holds.

• Pseudotransitivity rule. If α→β holds and γβ →δ holds, then αγ →δ holds.

Closure of Attribute Sets

To test whether a set α is a superkey, we must devise an algorithm for computing the set of attributes

functionally determined by α. One way of doing this is to compute F+, take all functional dependencies

with α as the left-hand side, and take the union of the right-hand sides of all such

dependencies.However, doing so can be expensive, since F+ can be large.

F+ = F

repeat

for each functional dependency f in F+

apply reflexivity and augmentation rules on f

add the resulting functional dependencies to F+

for each pair of functional dependencies f1 and f2 in F+

iff1 and f2 can be combined using transitivity

add the resulting functional dependency to F+

untilF+ does not change any further

15 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

Let α be a set of attributes.We call the set of all attributes functionally determined by α under a set F of

functional dependencies the closure of α under F; we denote it by α+. The input is a set F of functional

dependencies and the set α of attributes. The output is stored in the variable result. The first time that

we execute the while loop to test each functional dependency, we find that

• A → B causes us to include B in result. To see this fact, we observe that A → B is in F, A ⊆result (which

is AG), so result :=result ∪B.

• A→ C causes result to become ABCG.

• CG→H causes result to become ABCGH.

• CG→I causes result to become ABCGHI.

It turns out that, in the worst case, this algorithm may take an amount of time quadratic in the size of F.

There is a faster (although slightly more complex) algorithm that runs in time linear in the size of F.

result:= α;

while(changes to result) do

for each functional dependency β → γ in F do

begin

ifβ ⊆result then result := result ∪γ;

end

There are several uses of the attribute closure algorithm:

 To test if α is a superkey, we compute α+, and check if α+ contains all attributes of R.

 We can check if a functional dependency α → β holds (or, in other words, is in F+), by checking if

β ⊆α+. That is, we compute α+ by using attribute closure, and then check if it contains β.

 It gives us an alternative way to compute F+: For each γ ⊆R, we find the closure γ+, and for each

S ⊆γ+, we output a functional dependency γ → S.

Canonical Cover

Suppose that we have a set of functional dependencies F on a relation schema. Whenever a user

performs an update on the relation, the database system must ensure that the update does not violate

any functional dependencies, that is, all the functional dependencies in F are satisfied in the new

database state. The system must roll back the update if it violates any functional dependencies in the set

F.

16 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

An attribute of a functional dependency is said to be extraneous if we can remove it without changing

the closure of the set of functional dependencies. The formal definition of extraneous attributes is as

follows. Consider a set F of functional dependencies and the functional dependency α →β in F.

• Attribute A is extraneous in α ifA ∈α, and F logically implies (F − {α →β}) ∪ {(α − A) → β}.

• Attribute A is extraneous in β if A ∈β, and the set of functional dependencies (F − {α →β}) ∪ {α → (β −

A)} logically implies F.

Consider an attribute A in a dependency α → β.

• If A ∈β, to check if A is extraneous consider the set F_ = (F − {α → β}) ∪ {α → (β − A)}and check if α → A

can be inferred fromF_. To do so, compute α+ (the closure of α) under F_; if α+ includes A, then A is

extraneous in β.

• If A ∈α, to check if A is extraneous, let γ = α − {A}, and check if γ → βcan be inferred from F. To do so,

compute γ+ (the closure of γ) under F; if γ+includes all attributes in β, then A is extraneous in α.

A canonical cover Fc for F is a set of dependencies such that F logically implies all dependencies in Fc,

and Fc logically implies all dependencies in F. Furthermore, Fcmust have the following properties:

• No functional dependency in Fc contains an extraneous attribute.

• Each left side of a functional dependency in Fc is unique. That is, there are no two dependencies α1 →

β1 and α2 → β2 in Fc such that α1 = α2.

11.Explain Decomposition? (11 Marks)

Consider an alternative design in which we decompose Lending-schema into the following two

schemas:

Branch-customer-schema = (branch-name, branch-city, assets, customer-name)

Customer-loan-schema = (customer-name, loan-number, amount)

Using the lending relation of Figure 7.1,we construct our new relations branch-customer

(Branch-customer) and customer-loan (Customer-loan-schema):

branch-customer= Πbranch-name, branch-city, assets, customer-name (lending)

17 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

customer-loan= Πcustomer-name, loan-number, amount (lending)

It appears that we can do so by writing

branch-customer� customer-loan

The relation branch-customer.

The relation customer-loan.

18 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

The relation branch-customer � customer-loan.

Desirable Properties of Decomposition

We illustrate our concepts with the Lendingschema

Lending-schema = (branch-name, branch-city, assets, customer-name,

loan-number, amount)

The set F of functional dependencies that we require to hold on Lending-schema are

branch-name→ branch-city assets

loan-number→ amount branch-name

Lending-schema is an example of a bad database design. Assume that we decompose it to the following

three relations:

Branch-schema = (branch-name, branch-city, assets)

Loan-schema = (loan-number, branch-name, amount)

Borrower-schema = (customer-name, loan-number)

Lossless-Join Decomposition

Let R be a relation schema, and let F be a set of functional dependencies on R. Let R1 and R2 form a

decomposition of R. This decomposition is a lossless-join decomposition of R if at least one of the

following functional dependencies is in F+:

19 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

• R1 ∩ R2 → R1

• R1 ∩ R2 → R2

In other words, if R1 ∩ R2 forms a superkey of either R1 or R2, the decomposition of R is a lossless-join

decomposition.

We now demonstrate that our decomposition of Lending-schema is a lossless-join decomposition by

showing a sequence of steps that generate the decomposition. We begin by decomposing Lending-

schema into two schemas:

Branch-schema = (branch-name, branch-city, assets)

Loan-info-schema = (branch-name, customer-name, loan-number, amount)

Since branch-name → branch-city assets, the augmentation rule for functional dependencies implies

that

branch-name→ branch-name branch-city assets

Since Branch-schema ∩ Loan-info-schema = {branch-name}, it follows that our initial decomposition is

a lossless-join decomposition. Next, we decompose Loan-info-schema into

Loan-schema = (loan-number, branch-name, amount)

Borrower-schema = (customer-name, loan-number)

This step results in a lossless-join decomposition, since loan-number is a common attribute and loan-

number → amount branch-name.

Dependency Preservation

To decide whether joins must be computed to check an update, we need to determine what functional

dependencies can be tested by checking each relation individually. Let F be a set of functional

dependencies on a schema R, and let R1, R2, . . . ,Rnbe a decomposition of R. The restriction of F to Riis

the set Fi of all functional dependencies in F+ that include only attributes of Ri. Since all functional

dependencies in a restriction involve attributes of only one relation schema, it is possible to test such a

dependency for satisfaction by checking only one relation.

We consider each member of the set F of functional dependencies that we require to hold on Lending-

schema, and show that each one can be tested in at least one relation in the decomposition.

• We can test the functional dependency: branch-name → branch-city assets using Branch-schema =

(branch-name, branch-city, assets)

20 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

• We can test the functional dependency: loan-number → amount branch-name using Loan-schema =

(branch-name, loan-number, amount).

computeF+;

for each schema Riin D do

begin

Fi : = the restriction of F+ to Ri;

end

F_ := ∅

for each restriction Fi do

begin

F_ = F_ ∪Fi

end

computeF_+;

if(F_+ = F+) then return (true)

elsereturn (false);

Repetition of Information

In the decomposition, the relation on schema Borrowerschemacontains the loan-number, customer-

name relationship, and no other schemadoes. Therefore, we have one tuple for each customer for a loan

in only the relationon Borrower-schema. In the other relations involving loan-number (those on

schemasLoan-schema and Borrower-schema), only one tuple per loan needs to appear.

12. Explain in detail about Boyce–Codd Normal Form? (11 Marks)

Definition

One of the more desirable normal forms that we can obtain is Boyce–Codd normal form (BCNF). A

relation schema R is in BCNF with respect to a set F of functionaldependencies if, for all functional

dependencies in F+ of the form α → β, where α ⊆R and β ⊆R, at least one of the following holds:

• α→ β is a trivial functional dependency (that is, β ⊆α).

• αis a superkey for schema R.

A database design is in BCNF if each member of the set of relation schemas that constitutes the design is

in BCNF. Consider the following relation schemas and their respective functional dependencies:

21 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

• Customer-schema = (customer-name, customer-street, customer-city) customer-name → customer-

street customer-city

• Branch-schema = (branch-name, assets, branch-city) branch-name → assets branch-city

• Loan-info-schema = (branch-name, customer-name, loan-number, amount) loan-number → amount

branch-name

It is now possible to avoid redundancy in the case where there are several customers associated with a

loan. There is exactly one tuple for each loan in the relation on Loan-schema, and one tuple for each

customer of each loan in the relation on Borrower-schema. Thus, we do not have to repeat the branch

name and the amount once for each customer associated with a loan. Often testing of a relation to see if

it satisfies BCNF can be simplified:

 To check if a nontrivial dependency α → β causes a violation of BCNF, computeα+ (the attribute

closure of α), and verify that it includes all attributes ofR; that is, it is a superkey of R.

 To check if a relation schema R is in BCNF, it suffices to check only the dependencies in the given

set F for violation of BCNF, rather than check all dependenciesin F

Decomposition Algorithm

The decomposition that the algorithm generates is not only in BCNF, but is also a lossless-join

decomposition. To see why our algorithm generates only lossless-join decompositions, we note that,

when we replace a schema Riwith (Ri−β) and (α, β), the dependency α →β holds, and (Ri−β) ∩(α, β) = α.

result:= {R};

done:= false;

computeF+;

while(not done) do

if(there is a schema Riin result that is not in BCNF)

then begin

letα →β be a nontrivial functional dependency that holds

onRisuch that α →Riis not in F+, and α ∩β = ∅;

result:= (result −Ri) ∪(Ri−β) ∪(α, β);

end

elsedone := true;

Lending-schema = (branch-name, branch-city, assets, customer-name,loan-number, amount)

22 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

The set of functional dependencies that we require to hold on Lending-schema are

branch-name→assets branch-city

loan-number→amount branch-name

A candidate key for this schema is {loan-number, customer-name}.

We can apply the algorithm of Figure 7.13 to the Lending-schema example as follows:

•The functional dependency

branch-name→assets branch-city

holds on Lending-schema, but branch-name is not a superkey. Thus, Lendingschemais not in BCNF. We

replace Lending-schema by

Branch-schema = (branch-name, branch-city, assets)

Loan-info-schema = (branch-name, customer-name, loan-number, amount)

Dependency Preservation

Banker-schema = (branch-name, customer-name, banker-name)

which indicates that a customer has a “personal banker” in a particular branch. The set F of functional

dependencies that we require to hold on the Banker-schema is

banker-name → branch-name

branch-name customer-name → banker-name

Clearly, Banker-schema is not in BCNF since banker-name is not a superkey. If we apply the algorithm

we obtain the following BCNF decomposition:

Banker-branch-schema = (banker-name, branch-name)

Customer-banker-schema = (customer-name, banker-name)

The decomposed schemas preserve only banker-name → branch-name (and trivial dependencies), but

the closure of {banker-name → branch-name} does not include customer-name branch-name → banker-

name. The violation of this dependency cannot be detected unless a join is computed.

Thus, the example shows that we cannot always satisfy all three design goals:

1. Lossless join

2. BCNF

3. Dependency preservation

13. Explain about third normal form? (11 Marks)APR 2014

23 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

We have two alternatives if we wish to check if an update violates any functional dependencies:

• Pay the extra cost of computing joins to test for violations.

• Use an alternative decomposition, third normal form (3NF), which we present below, which makes

testing of updates cheaper. Unlike BCNF, 3NF decompositions may contain some redundancy in the

decomposed schema.

Definition

BCNF requires that all nontrivial dependencies be of the form α → β, where α is a superkey. 3NF relaxes

this constraint slightly by allowing nontrivial functional dependencies whose left side is not a superkey.

A relation schema R is in third normal form (3NF) with respect to a set F of functional dependenciesif,

for all functional dependencies in F+ of the form α → β, where α ⊆ R and β ⊆ R, at least one of the

following holds:

 α → β is a trivial functional dependency.

 α is a superkey for R.

 Each attribute A in β − α is contained in a candidate key for R.

The first two alternatives are the same as the two alternatives in the definition of BCNF. The third

alternative of the 3NF definition seems rather unintuitive, and it is not obvious why it is useful. It

represents, in some sense, a minimal relaxation of the BCNF conditions that helps ensure that every

schema has a dependency-preserving decomposition into 3NF. Its purpose will become more clear

later, when we study decomposition into 3NF.

The only nontrivial functional dependencies of the form α → banker-name include {customer-name,

branch-name} as part of α. Since {customer-name, branch-name} is a candidate key, these dependencies

do not violate the definition of 3NF.

Decomposition Algorithm

The set of dependencies Fc used in the algorithm is a canonical cover for F.Note that the algorithm

considers the set of schemas Rj, j = 1, 2, . . . , i; initially i = 0, and in this case the set is empty.

let Fc be a canonical cover for F;

i := 0;

24 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

for each functional dependency α → β in Fc do

if none of the schemas Rj, j = 1, 2, . . . , i contains αβ

then begin

i := i + 1;

Ri := αβ;

end

if none of the schemas Rj, j = 1, 2, . . . , i contains a candidate key for R

then begin

i := i + 1;

Ri := any candidate key for R;

end

return (R1,R2, . . .,Ri)

Banker-info-schema = (branch-name, customer-name, banker-name, office-number)

The main difference here is that we include the banker’s office number as part of the information. The

functional dependencies for this relation schema are

banker-name → branch-name office-number

customer-name branch-name → banker-name

The for loop in the algorithm causes us to include the following schemas in our decomposition:

Banker-office-schema = (banker-name, branch-name, office-number)

Banker-schema = (customer-name, branch-name, banker-name)

Let us consider the three possible cases:

 B is in both α and β. In this case, the dependency α → β would not have been in Fc since B would

be extraneous in β. Thus, this case cannot hold.

 B is in β but not α. Consider two cases:

- γ is a superkey. The second condition of 3NF is satisfied.

- γ is not a superkey. Then α must contain some attribute not in γ. Now, since γ → B is in F+, it

must be derivable from Fc by using the attribute closure algorithm on γ. The derivation could

not have used α → β— if it had been used, α must be contained in the attribute closure of γ,

which is not possible, since we assumed γ is not a superkey. Now, using α → (β −{B}) and γ → B,

we can derive α → B (since γ ⊆ αβ, and γ cannot contain B because γ → B is nontrivial). This

would imply that B is extraneous in the right hand side of α → β, which is not possible since α →

β is in the canonical cover Fc. Thus, if B is in β, then γ must be a superkey, and the second

condition of 3NF must be satisfied.

25 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

 B is in α but not β. Since α is a candidate key, the third alternative in the definition of 3NF is

satisfied.

14. Explain about fourth normal form? (11 Marks)APR 2014

BC-schema = (loan-number, customer-name, customer-street, customer-city)

The astute reader will recognize this schema as a non-BCNF schema because of the functional

dependency

customer-name → customer-street customer-city

Multivalued Dependencies

Functional dependencies rule out certain tuples from being in a relation. If A → B, then we cannot have

two tuples with the same A value but different B values. Multivalued dependencies, on the other hand,

do not rule out the existence of certain tuples. Instead, they require that other tuples of a certain form

be present in the relation. For this reason, functional dependencies sometimes are referred to as

equalitygenerating dependencies, and multivalued dependencies are referred to as tuplegenerating

dependencies.

Let R be a relation schema and let α ⊆ R and β ⊆ R. The multivalued dependency

α →→ β

holds on R if, in any legal relation r(R), for all pairs of tuples t1 and t2 in r such that t1[α] = t2[α], there

exist tuples t3 and t4 in r such that

t1[α] = t2[α] = t3[α] = t4[α]

t3[β] = t1[β]

t3[R − β] = t2[R − β]

t4[β] = t2[β]

t4[R − β] = t1[R − β]

As with functional dependencies, we shall use multivalued dependencies in two ways:

1. To test relations to determine whether they are legal under a given set of functional and multivalued

dependencies

2. To specify constraints on the set of legal relations; we shall thus concern ourselves

with only those relations that satisfy a given set of functional and multivalued

dependencies.

From the definition of multivalued dependency, we can derive the following rule:

26 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

• If α → β, then α →→ β.

In other words, every functional dependency is also a multivalued dependency.

Definition of Fourth Normal Form

Consider again our BC-schema example in which the multivalued dependency customer

name→→customer-street customer-city holds, but no nontrivial functional dependencies hold.We saw

in the opening paragraphs of Section 7.8 that, although BCschema is in BCNF, the design is not ideal,

since we must repeat a customer’s address information for each loan. We shall see that we can use the

given multivalued dependency to improve the database design, by decomposing BC-schema into a

fourth normal form decomposition.

A relation schema R is in fourth normal form (4NF) with respect to a set D of functional and

multivalued dependencies if, for all multivalued dependencies in D+ of the form α →→ β, where α ⊆ R

and β ⊆ R, at least one of the following holds

• α →→ β is a trivial multivalued dependency.

• α is a superkey for schema R.

A database design is in 4NF if each member of the set of relation schemas that constitutes the design is

in 4NF.

result := {R};

done := false;

compute D+; Given schema Ri, let Di denote the restriction of D+ to Ri

while (not done) do

if (there is a schema Ri in result that is not in 4NF w.r.t. Di)

then begin

let α →→ β be a nontrivial multivalued dependency that holds

on Ri such that α → Ri is not in Di, and α ∩ β = ∅;

result := (result − Ri) ∪ (Ri − β) ∪ (α, β);

end

else done := true;

Let R be a relation schema, and let R1,R2, . . . , Rn be a decomposition of R. To check if each relation

schema Ri in the decomposition is in 4NF, we need to find what multivalued dependencies hold on each

Ri. Recall that, for a set F of functional dependencies, the restriction Fi of F to Ri is all functional

27 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

dependencies in F+ that include only attributes ofRi.Now consider a setDof both functional and

multivalued dependencies. The restriction of D to Ri is the set Di consisting of

1. All functional dependencies in D+ that include only attributes of Ri

2. All multivalued dependencies of the form

α →→ β ∩ Ri

where α ⊆ Ri and α →→ β is in D+.

Decomposition Algorithm

The analogy between 4NF and BCNF applies to the algorithm for decomposing a schema . It is identical

to the BCNF decomposition algorithm of Figure 7.13, except that it uses multivalued, instead of

functional, dependencies and uses the restriction of D+ to Ri. If we apply the algorithm BC-schema, we

find that customer-name →→ loan-number is a nontrivial multivalued dependency, and customer-name

is not a superkey for BC-schema. Following the algorithm, we replace BC-schema by two schemas:

Borrower-schema = (customer-name, loan-number)

Customer-schema = (customer-name, customer-street, customer-city).

This pair of schemas, which is in 4NF, eliminates the problem we encountered earlier

with the redundancy of BC-schema.

Let R be a relation schema, and let D be a set of functional and multivalued dependencies on R. Let R1

and R2 form a decomposition of R. This decomposition is a lossless-join decomposition of R if and only

if at least one of the following multivalued dependencies is in D+:

R1 ∩ R2 →→ R1

R1 ∩ R2 →→ R2

More Normal Forms Or Fifth normal forms

The fourth normal form is by no means the “ultimate” normal form. As we saw earlier, multivalued

dependencies help us understand and tackle some forms of repetition of information that cannot be

understood in terms of functional dependencies. There are types of constraints called join

dependencies that generalize multivalued dependencies, and lead to another normal form called

project-join normal form (PJNF) (PJNF is called fifth normal form in some books). There is a class of

even more general constraints, which leads to a normal form called domain-key normal form.

28 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

Boyce-Codd Normal Form

1. A relation schema R is in Boyce-Codd Normal Form (BCNF) with respect to a set F of functional

dependencies if for all functional dependencies in of the form , where and ,

at least one of the following holds:

o is a trivial functional dependency (i.e.).

o is a superkey for schema R.

2. A database design is in BCNF if each member of the set of relation schemas is in BCNF.

3. Let's assess our example banking design:

 Customer-schema = (cname, street, ccity)

 cname street ccity

 Branch-schema = (bname, assets, bcity)

 bname assets bcity

 Loan-info-schema = (bname, cname, loan#, amount)

 loan# amount bname

Customer-schema and Branch-schema are in BCNF.

4. Let's look at Loan-info-schema:

o We have the non-trivial functional dependency loan# amount, and

o loan# is not a superkey.

o Thus Loan-info-schema is not in BCNF.

o We also have the repetition of information problem.

o For each customer associated with a loan, we must repeat the branch name and amount

of the loan.

o We can eliminate this redundancy by decomposing into schemas that are all in BCNF.

5. If we decompose into

 Loan-schema = (bname, loan#, amount)

 Borrow-schema = (cname, loan#)

we have a lossless-join decomposition. (Remember why?)

To see whether these schemas are in BCNF, we need to know what functional dependencies

apply to them.

o For Loan-schema, we have loan# amount bname applying.

o Only trivial functional dependencies apply to Borrow-schema.

o Thus both schemas are in BCNF.

29 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

We also no longer have the repetition of information problem. Branch name and loan amount

information are not repeated for each customer in this design.

6. Now we can give a general method to generate a collection of BCNF schemas.

 result := ;

done := false;

compute ;

while (not done) do

 if (there is a schema in result that is not in BCNF)

 then begin

 let be a nontrivial

functional dependency that holds on

such that is not in ,

and ;

 result = (result ;

end

 else done = true;

7. This algorithm generates a lossless-join BCNF decomposition. Why?

o We replace a schema with and .

o The dependency holds on .

o .

o So we have , and thus a lossless join.

8. Let's apply this algorithm to our earlier example of poor database design:

 Lending-schema = (bname, assets, bcity, loan#, cname, amount)

The set of functional dependencies we require to hold on this schema are

bname assets bcity

loan# amount bname

A candidate key for this schema is {loan#, cname}.

We will now proceed to decompose:

o The functional dependency

o bname assets bcity

holds on Lending-schema, but bname is not a superkey.

30 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

We replace Lending-schema with

 Branch-schema = (bname, assets, bcity)

Loan-info-schema = (bname, loan#, cname, amount)

o Branch-schema is now in BCNF.

o The functional dependency loan# amount bname olds on Loan-info-schema, but loan#

is not a superkey.

We replace Loan-info-schema with

 Loan-schema = (bname, loan#, amount)

 Borrow-schema = (cname, loan#)

o These are both now in BCNF.

o We saw earlier that this decomposition is both lossless-join and dependency-preserving.

9. Not every decomposition is dependency-preserving.

o Consider the relation schema

o Banker-schema = (bname, cname, banker-name)

o The set F of functional dependencies is

o banker-name bname

o

o cname bname banker-name

o The schema is not in BCNF as banker-name is not a superkey.

o If we apply our algorithm, we may obtain the decomposition

o Banker-branch-schema = (bname, banker-name)

o Cust-banker-schema = (cname, banker-name)

o The decomposed schemas preserve only the first (and trivial) functional dependencies.

o The closure of this dependency does not include the second one.

o Thus a violation of cname bname banker-name cannot be detected unless a join is

computed.

This shows us that not every BCNF decomposition is dependency-preserving.

10. It is not always possible to satisfy all three design goals:

 BCNF.

 Lossless join.

 Dependency preservation.

11. We can see that any BCNF decomposition of Banker-schema must fail to preserve

12. cname bname banker-name

13. Some Things To Note About BCNF

31 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

 There is sometimes more than one BCNF decomposition of a given schema.

 The algorithm given produces only one of these possible decompositions.

 Some of the BCNF decompositions may also yield dependency preservation, while

others may not.

 Changing the order in which the functional dependencies are considered by the

algorithm may change the decomposition.

 For example, try running the BCNF algorithm on

Then change the order of the last two functional dependencies and run the algorithm again. Check the

two decompositions for dependency preservation.

Third Normal Form

1. When we cannot meet all three design criteria, we abandon BCNF and accept a weaker form

called third normal form (3NF).

2. It is always possible to find a dependency-preserving lossless-join decomposition that is in 3NF.

3. A relation schema R is in 3NF with respect to a set F of functional dependencies if for all

functional dependencies in of the form , where and , at least one of the

following holds:

a. is a trivial functional dependency.

b. is a superkey for schema R.

c. Each attribute A in is contained in a candidate key for R.

4. A database design is in 3NF if each member of the set of relation schemas is in 3NF.

5. We now allow functional dependencies satisfying only the third condition. These dependencies

are called transitive dependencies, and are not allowed in BCNF.

6. As all relation schemas in BCNF satisfy the first two conditions only, a schema in BCNF is also in

3NF.

7. BCNF is a more restrictive constraint than 3NF.

8. Our Banker-schema decomposition did not have a dependency-preserving lossless-join

decomposition into BCNF. The schema was already in 3NF though (check it out).

9. We now present an algorithm for finding a dependency-preserving lossless-join decomposition

into 3NF.

32 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

10. Note that we require the set F of functional dependencies to be in canonical form.

 let be a canonical cover for F;

 i := 0;

 for each functional dependency do

 if none of the schemas , contains

 then begin

 i := i + 1;

 :=

 end

 if none of the schemas ,

contains a candidate key for R

 then begin

 i := i + 1;

 := any candidate key for R

 end

 return ()

Each relation schema is in . Why? (A proof is given is [Ullman 1988].)

Comparison of BCNF and 3NF

1. We have seen BCNF and 3NF.

o It is always possible to obtain a 3NF design without sacrificing lossless-join or

dependency-preservation.

o If we do not eliminate all transitive dependencies, we may need to use null values to

represent some of the meaningful relationships.

o Repetition of information occurs.

2. These problems can be illustrated with Banker-schema.

o As banker-name bname , we may want to express relationships between a banker and

his or her branch.

Figure 7.4: An instance of Banker-schema.

33 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

o Figure 7.4 shows how we must either have a corresponding value for customer name, or

include a null.

o Repetition of information also occurs.

o Every occurrence of the banker's name must be accompanied by the branch name.

3. If we must choose between BCNF and dependency preservation, it is generally better to opt for

3NF.

o If we cannot check for dependency preservation efficiently, we either pay a high price in

system performance or risk the integrity of the data.

o The limited amount of redundancy in 3NF is then a lesser evil.

4. To summarize, our goal for a relational database design is

o BCNF.

o Lossless-join.

o Dependency-preservation.

5. If we cannot achieve this, we accept

o 3NF

o Lossless-join.

o Dependency-preservation.

6. A final point: there is a price to pay for decomposition. When we decompose a relation, we have

to use natural joins or Cartesian products to put the pieces back together. This takes

computational time.

Fourth Normal Form (4NF)

1. We saw that BC-schema was in BCNF, but still was not an ideal design as it suffered from

repetition of information. We had the multivalued dependency cname street ccity, but no non-

trivial functional dependencies.

2. We can use the given multivalued dependencies to improve the database design by decomposing

it into fourth normal form.

3. A relation schema R is in 4NF with respect to a set D of functional and multivalued dependencies

if for all multivalued dependencies in of the form , where and , at least one

of the following hold:

o is a trivial multivalued dependency.

o is a superkey for schema R.

4. A database design is in 4NF if each member of the set of relation schemas is in 4NF.

http://www.cs.sfu.ca/CC/354/zaiane/material/notes/Chapter7/node12.html#fig68banker

34 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

5. The definition of 4NF differs from the BCNF definition only in the use of multivalued

dependencies.

o Every 4NF schema is also in BCNF.

o To see why, note that if a schema is not in BCNF, there is a non-trivial functional

dependency holding on R, where is not a superkey.

o Since implies , by the replication rule, R cannot be in 4NF.

6. We have an algorithm similar to the BCNF algorithm for decomposing a schema into 4NF:

 result := ;

 done := false;

 compute ;

 while (not done) do

 if (there is a schema in result

 that is not in 4NF)

 then begin

 let be a nontrivial multivalued

 dependency that holds on such that is not in , and

 ;

 result =

 end

 else done = true;

7. If we apply this algorithm to BC-schema:

o cname loan# is a nontrivial multivalued dependency and cname is not a superkey for

the schema.

o We then replace BC-schema by two schemas:

o Cust-loan-schema=(cname, loan#)

o Customer-schema=(cname, street, ccity)

o These two schemas are in 4NF.

8. We can show that our algorithm generates only lossless-join decompositions.

 Let R be a relation schema and D a set of functional and multivalued dependencies on R.

 Let and form a decomposition of R.

35 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

 This decomposition is lossless-join if and only if at least one of the following multivalued

dependencies is in :

 We saw similar criteria for functional dependencies.

 This says that for every lossless-join decomposition of R into two schemas and , one of the two

above dependencies must hold.

 You can see, by inspecting the algorithm, that this must be the case for every decomposition.

9. Dependency preservation is not as simple to determine as with functional dependencies.

 Let R be a relation schema.

 Let be a decomposition of R.

 Let D be the set of functional and multivalued dependencies holding on R.

 The restriction of D to is the set consisting of:

 All functional dependencies in that include only attributes of .

 All multivalued dependencies of the form where and is

in .

 A decomposition of schema R is dependency preserving with respect to a set D of functional and

multivalued dependencies if for every set of relations such that for all i,

satisfies , there exists a relation r(R) that satisfies D and for which for all i.

10. What does this formal statement say? It says that a decomposition is dependency preserving if

for every set of relations on the decomposition schema satisfying only the restrictions on D there

exists a relation r on the entire schema R that the decomposed schemas can be derived from, and

that r also satisfies the functional and multivalued dependencies.

11. We'll do an example using our decomposition algorithm and check the result for dependency

preservation.

o Let R=(A,B,C,G,H,I).

o Let D be

o

o

o

o R is not in 4NF, as we have and A is not a superkey.

o The algorithm causes us to decompose using this dependency into

36 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

o

o

o is now in 4NF, but is not.

o Applying the multivalued dependency (how did we get this?), our algorithm

then decomposes into

o

o

o is now in 4NF, but is not.

o Why? As is in (why?) then the restriction of this dependency to gives us

.

o Applying this dependency in our algorithm finally decomposes into

o

o

o The algorithm terminates, and our decomposition is and .

12. Let's analyze the result.

Figure 7.9: Projection of relation r onto a 4NF decomposition of R.

o This decomposition is not dependency preserving as it fails to preserve .

o Figure 7.9 (textbook 6.14) shows four relations that may result from projecting a relation

onto the four schemas of our decomposition.

o The restriction of D to (A,B) is and some trivial dependencies.

o We can see that satisfies as there are no pairs with the same A value.

o Also, satisfies all functional and multivalued dependencies since no two tuples have the

same value on any attribute.

o We can say the same for and .

o So our decomposed version satisfies all the dependencies in the restriction of D.

o However, there is no relation r on (A,B,C,G,H,I) that satisfies D and decomposes into

and .

o Figure 7.10 (textbook 6.15) shows .

o Relation r does not satisfy .

http://www.cs.sfu.ca/CC/354/zaiane/material/notes/Chapter7/node16.html#fig614NF
http://www.cs.sfu.ca/CC/354/zaiane/material/notes/Chapter7/node16.html#fig615MD

37 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

o Any relation s containing r and satisfying must include the tuple

.

o However, includes a tuple that is not in .

o Thus our decomposition fails to detect a violation of .

Figure 7.10: A relation r(R) that does not satisfy .

13. We have seen that if we are given a set of functional and multivalued dependencies, it is best to

find a database design that meets the three criteria:

o 4NF.

o Dependency Preservation.

o Lossless-join.

14. If we only have functional dependencies, the first criteria is just BCNF.

15. We cannot always meet all three criteria. When this occurs, we compromise on 4NF, and accept

BCNF, or even 3NF if necessary, to ensure dependency preservation.

7. Explain referential integrity in detail (Nov 2010)

Referential integrity

An example of a database that has not enforced referential integrity. In this example, there is a foreign

key (artist_id) value in the album table that references a non-existent artist — in other words there is a

foreign key value with no corresponding primary key value in the referenced table. What happened

here was that there was an artist called "Aerosmith", with an artist_id of "4", which was deleted from

the artist table. However, the album "Eat the Rich" referred to this artist. With referential integrity

enforced, this would not have been possible.

Referential integrity in a relational database is consistency between coupled tables. Referential

integrity is usually enforced by the combination of a primary key or candidate key (alternate key) and a

foreign key. For referential integrity to hold, any field in a table that is declared a foreign key can

contain only values from a parent table's primary key or a candidate key. For instance, deleting a record

that contains a value referred to by a foreign key in another table would break referential integrity. The

relational database management system (RDBMS) enforces referential integrity, normally either by

deleting the foreign key rows as well to maintain integrity, or by returning an error and not performing

the delete. Which method is used would be defined by the definition of the referential integrity

constraint.

http://en.wikipedia.org/wiki/Foreign_key
http://en.wikipedia.org/wiki/Primary_key
http://en.wikipedia.org/wiki/Aerosmith
http://en.wikipedia.org/wiki/Eat_the_Rich_%28Aerosmith_song%29
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Primary_key
http://en.wikipedia.org/wiki/Candidate_key
http://en.wikipedia.org/wiki/Alternate_key
http://en.wikipedia.org/wiki/Foreign_key
http://en.wikipedia.org/wiki/Table_%28database%29
http://en.wikipedia.org/wiki/Relational_database_management_system

38 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

Example

An employee database stores the department in which each employee works. The field "Department

Number" in the Employee table is declared a foreign key, and it refers to the field "Index" in the

Department table which is declared a primary key. Referential integrity would be broken by deleting a

department from the Department table if employees listed in the Employee table are listed as working

for that department, unless those employees are moved to a different department at the same time.

Database trigger

A database trigger is procedural code that is automatically executed in response to certain events on a

particular table in a database. Triggers can restrict access to specific data, perform logging, or audit data

modifications.

There are two classes of triggers, they are either "row triggers" or "statement triggers". With row

triggers you can define an action for every row of a table, while statement triggers occur only once per

INSERT, UPDATE, or DELETE statement. Triggers cannot be used to audit data retrieval via SELECT

statements.

Each class can be of several types. There are "BEFORE triggers" and "AFTER triggers" which identifies

the time of execution of the trigger. There is also an "INSTEAD OF trigger" which is a trigger that will

execute instead of the triggering statement.

There are typically three triggering events that cause triggers to 'fire':

 INSERT event (as a new record is being inserted into the database).

 UPDATE event (as a record is being changed).

 DELETE event (as a record is being deleted).

The trigger is used to automate DML condition process.

The major features and effects of database triggers are that they:

 do not accept parameters or arguments (but may store affected-data in temporary tables)

 cannot perform commit or rollback operations because they are part of the triggering SQL

statement (only through autonomous transactions)

 can cause mutating table errors, if they are poorly written.

Triggers in Oracle

In addition to triggers that fire when data is modified, Oracle 9i supports triggers that fire when schema

objects (that is, tables) are modified and when user logon or logoff events occur. These trigger types are

referred to as "Schema-level triggers".

Schema-level triggers

 After Creation

 Before Alter

http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Procedural_code
http://en.wikipedia.org/wiki/Table_%28database%29
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Insert_%28SQL%29
http://en.wikipedia.org/wiki/Update_%28SQL%29
http://en.wikipedia.org/wiki/Delete_%28SQL%29
http://en.wikipedia.org/wiki/Select_%28SQL%29
http://en.wikipedia.org/wiki/Insert_%28SQL%29
http://en.wikipedia.org/wiki/Update_%28SQL%29
http://en.wikipedia.org/wiki/Delete_%28SQL%29
http://en.wikipedia.org/wiki/Data_Manipulation_Language

39 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

 After Alter

 Before Drop

 After Drop

 Before Logoff

 After Logon

Triggers in Microsoft SQL Server

Microsoft SQL Server supports triggers either after or instead of an insert, update, or delete operation.

'Microsoft SQL Server supports triggers on tables and views with the constraint that a view can be

referenced only by an INSTEAD OF trigger.

Microsoft SQL Server 2005 introduced support for Data Definition Language (DDL) triggers, which can

fire in reaction to a very wide range of events, including:

 Drop table

 Create table

 Alter table

 Login events

Performing conditional actions in triggers (or testing data following modification) is done through

accessing the temporary Inserted and Deleted tables.

Triggers in PostgreSQL

PostgreSQL introduced support for triggers in 1997. The following functionality in SQL:2003 is not

implemented in PostgreSQL:

 SQL allows triggers to fire on updates to specific columns; PostgreSQL does not support this

feature.

 The standard allows the execution of a number of other SQL statements than SELECT, INSERT,

UPDATE, such as CREATE TABLE as the triggered action.

Triggers in MySQL

MySQL 5.0 introduced support for triggers. Some of the triggers MYSQL supports are

 INSERT Trigger

 UPDATE Trigger

 DELETE Trigger

The SQL:2003 standard mandates that triggers give programmers access to record variables by means

of a syntax such as REFERENCING NEW AS n. For example, if a trigger is monitoring for changes to a

salary column one could write a trigger like the following:

 CREATE TRIGGER salary_trigger

 BEFORE UPDATE ON employee_table

http://en.wikipedia.org/wiki/Table_%28database%29
http://en.wikipedia.org/wiki/View_%28database%29
http://en.wikipedia.org/wiki/Data_Definition_Language
http://en.wikipedia.org/wiki/Drop_%28SQL%29
http://en.wikipedia.org/wiki/Create_%28SQL%29
http://en.wikipedia.org/wiki/Alter_%28SQL%29
http://en.wikipedia.org/wiki/SQL:2003
http://en.wikipedia.org/wiki/SQL:2003

40 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

 REFERENCING NEW ROW AS n, OLD ROW AS o

 FOR EACH ROW

 IF n.salary <> o.salary THEN

 --make desired changes;

 END IF;

8. Explain any one Database system of your own with normalization (Nov 2010)

Normalization is a method for organizing data elements in a database into tables.

Normalization Avoids

 Duplication of Data – The same data is listed in multiple lines of the database

 Insert Anomaly – A record about an entity cannot be inserted into the table without first

inserting information about another entity – Cannot enter a customer without a sales order

 Delete Anomaly – A record cannot be deleted without deleting a record about a related entity.

Cannot delete a sales order without deleting all of the customer’s information.

 Update Anomaly – Cannot update information without changing information in many places. To

update customer information, it must be updated for each sales order the customer has placed

Normalization is a three stage process – After the first stage, the data is said to be in first normal form,

after the second, it is in second normal form, after the third, it is in third normal form

Before Normalization

1. Begin with a list of all of the fields that must appear in the database. Think of this as one big table.

2. Do not include computed fields

3. One place to begin getting this information is from a printed document used by the system.

4. Additional attributes besides those for the entities described on the document can be added to the

database.

Before Normalization – Example

See Sales Order from below:

41 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

Sales Order

Fiction Company

202 N. Main

Mahattan, KS 66502

CustomerNumber: 1001 Sales Order Number: 405

Customer Name: ABC Company Sales Order Date: 2/1/2000

Customer Address: 100 Points Clerk Number: 210

 Manhattan, KS 66502 Clerk Name: Martin Lawrence

Item Ordered Description Quantity Unit Price Total

800
801

805

widgit small
tingimajigger

thingibob

40
20

10

60.00
20.00

100.00

2,400.00
400.00

1,000.00

 Order Total 3,800.00

Fields in the original data table will be as follows:

SalesOrderNo, Date, CustomerNo, CustomerName, CustomerAdd, ClerkNo, ClerkName, ItemNo,

Description, Qty, UnitPrice

Think of this as the baseline – one large table

Normalization: First Normal Form

 Separate Repeating Groups into New Tables.

 Repeating Groups Fields that may be repeated several times for one document/entity

 Create a new table containing the repeating data

 The primary key of the new table (repeating group) is always a composite key; Usually

document number and a field uniquely describing the repeating line, like an item number.

First Normal Form Example

The new table is as follows:

SalesOrderNo, ItemNo, Description, Qty, UnitPrice

The repeating fields will be removed from the original data table, leaving the following.

42 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

SalesOrderNo, Date, CustomerNo, CustomerName, CustomerAdd, ClerkNo, ClerkName

These two tables are a database in first normal form

What if we did not Normalize the Database to First Normal Form?

Repetition of Data – SO Header data repeated for every line in sales order.

Normalization: Second Normal Form

 Remove Partial Dependencies.

 Functional Dependency The value of one attribute in a table is determined entirely by the value

of another.

 Partial Dependency A type of functional dependency where an attribute is functionally

dependent on only part of the primary key (primary key must be a composite key).

 Create separate table with the functionally dependent data and the part of the key on which it

depends. Tables created at this step will usually contain descriptions of resources.

Second Normal Form Example

The new table will contain the following fields:

ItemNo, Description

All of these fields except the primary key will be removed from the original table. The primary key will

be left in the original table to allow linking of data:

SalesOrderNo, ItemNo, Qty, UnitPrice

Never treat price as dependent on item. Price may be different for different sales orders (discounts,

special customers, etc.)

Along with the unchanged table below, these tables make up a database in second normal form:

SalesOrderNo, Date, CustomerNo, CustomerName, CustomerAdd, ClerkNo, ClerkName

What if we did not Normalize the Database to Second Normal Form?

 Repetition of Data – Description would appear every time we had an order for the item

 Delete Anomalies – All information about inventory items is stored in the SalesOrderDetail table.

Delete a sales order, delete the item.

 Insert Anomalies – To insert an inventory item, must insert sales order.

 Update Anomalies – To change the description, must change it on every SO.

Normalization: Third Normal Form

 Remove transitive dependencies.

 Transitive Dependency A type of functional dependency where an attribute is functionally

dependent on an attribute other than the primary key. Thus its value is only indirectly

determined by the primary key.

43 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

 Create a separate table containing the attribute and the fields that are functionally dependent on

it. Tables created at this step will usually contain descriptions of either resources or agents.

Keep a copy of the key attribute in the original file.

Third Normal Form Example

The new tables would be:

CustomerNo, CustomerName, CustomerAdd

ClerkNo, ClerkName

All of these fields except the primary key will be removed from the original table. The primary key will

be left in the original table to allow linking of data as follows:

SalesOrderNo, Date, CustomerNo, ClerkNo

Together with the unchanged tables below, these tables make up the database in third normal form.

ItemNo, Description

SalesOrderNo, ItemNo, Qty, UnitPrice

What if we did not Normalize the Database to Third Normal Form?

 Repetition of Data – Detail for Cust/Clerk would appear on every SO

 Delete Anomalies – Delete a sales order, delete the customer/clerk

 Insert Anomalies – To insert a customer/clerk, must insert sales order.

 Update Anomalies – To change the name/address, etc, must change it on every SO.

Completed Tables in Third Normal Form

Customers: CustomerNo, CustomerName, CustomerAdd

Clerks: ClerkNo, ClerkName

Inventory Items: ItemNo, Description

Sales Orders: SalesOrderNo, Date, CustomerNo, ClerkNo

SalesOrderDetail: SalesOrderNo, ItemNo, Qty, UnitPrice

9. Briefly explain RAID (NOV 2012)(APRIL 2014)

RAID

Redundant Array of Independent Drives is also known as Redundant Array of Inexpensive

Drives (or Disks), and in either respect it is referred to as RAID. RAID is an umbrella term for computer

data storage schemes that divide and replicate data among multiple hard disk drives. RAID's various

designs balance or accentuate two key design goals: increased data reliability and increased I/O

(input/output) performance.

44 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

A number of standard schemes have evolved which are referred to as levels. There were five

RAID levels originally conceived, but many more variations have evolved, notably several nested levels

and many non-standard levels (mostly proprietary).

RAID combines physical hard disks into a single logical unit by using either special hardware or

software. Hardware solutions often are designed to present themselves to the attached system as a

single hard drive, and the operating system is unaware of the technical workings. Software solutions

are typically implemented in the operating system, and again would present the RAID drive as a single

drive to applications.

There are three key concepts in RAID: mirroring, the copying of data to more than one disk;

striping, the splitting of data across more than one disk; and error correction, where redundant data is

stored to allow problems to be detected and possibly fixed (known as fault tolerance). Different RAID

levels use one or more of these techniques, depending on the system requirements. The main aims of

using RAID are to improve reliability, important for protecting information that is critical to a business,

for example a database of customer orders; or where speed is important, for example a system that

delivers video on demand TV programs to many viewers.

The configuration affects reliability and performance in different ways. The problem with using

more disks is that it is more likely that one will go wrong, but by using error checking the total system

can be made more reliable by being able to survive and repair the failure. Basic mirroring can speed up

reading data as a system can read different data from both the disks, but it may be slow for writing if

the configuration requires that both disks must confirm that the data is correctly written. Striping is

often used for performance, where it allows sequences of data to be read off multiple disks at the same

time. Error checking typically will slow the system down as data needs to be read from several places

and compared. The design of RAID systems is therefore a compromise and understanding the

requirements of a system is important. Modern disk arrays typically provide the facility to select the

appropriate RAID configuration.

RAID systems can be designed to keep working when there is failure - disks can be hot swapped

and data recovered automatically while the system keeps running. Other systems have to be shut down

while the data is recovered. RAID is often used in high availability systems, where it is important that

the system keeps running as much of the time as possible.

10. Explain about B+Tree index files (NOV 2012)

45 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

The Non leaf nodes form a multi-level sparse index on the leaf nodes. For a non-leaf node with m

pointers:

 All the search-keys in the sub tree to which P1 points are less than K1

 For 2 i n – 1, all the search-keys in the sub tree to which Pi points have values greater

than or equal to Ki–1 and less than Km–1

 Leaf nodes must have between 2 and 4 values

((n–1)/2 and n –1, with n = 5).

 Non-leaf nodes other than root must have between 3 and 5 children ((n/2 and n with n

=5).

 Root must have at least 2 children.

B+-tree for account file (n = 3)

46 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

B+-tree for account file (n = 5)

A B+-tree is one in a family of multi-way search trees (others are: B-tree, 2-3-4 Tree, B*-Trees). These

trees were first proposed by Bayer and McCreight in 1972 and in just a few years had replaced almost

all large file access methods other than hashing. These multi-way balanced search trees are now the

standard file organization for applications requiring insertion, deletion, and key range searches. They

have the following advantages:

 B-trees are always height balanced, with all leaf nodes at the same level

 Update and search operations affect only a few disk pages, so performance is good.

 B-trees keep related records on the same disk page, which takes advantage of locality of

reference.

 B-trees guarantee that every node in the tree will be full at least to a certain minimum

percentage. This improves space efficiency while reducing the typical number of disk fetches necessary

during a search or update operation over many thousands of records.

B+-tree Structure

A B+-tree in certain aspects is a generalization of a binary search tree (BST). The main difference is that

nodes of a B+-tree will point to many children nodes rather than being limited to only two. Since our

goal is to minimize disk accesses whenever we are trying to locate records, we want to make the height

of the multi-way search tree as small as possible. This goal is achieved by having the tree branch in

large amounts at each node.

A B+-tree of order m is a tree where each internal node contains up to m branches (children nodes) and

thus store up to m-1 search key values -- in a BST, only one key value is needed since there are just two

children nodes that an internal node can have. m is also known as the branching factor or the fanout of

the tree.

1. The B+-tree stores records (or pointers to actual records) only at the leaf nodes, which are all

found at the same level in the tree, so the tree is always height balanced.

2. All internal nodes, except the root, have between Ceiling(m/2) and m children

3. The root is either a leaf or has at least two children.

4. Internal nodes store search key values, and are used only as placeholders to guide the search.

The number of search key values in each internal node is one less than the number of its non-empty

children, and these keys partition the keys in the children in the fashion of a search tree. The keys are

stored in non-decreasing order (i.e. sorted in lexicographical order).

47 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

5. Depending on the size of a record as compared to the size of a key, a leaf node in a B+-tree of

order m may store more or less than m records. Typically this is based on the size of a disk block, the

size of a record pointer, etc. The leaf pages must store enough records to remain at least half full.

6. The leaf nodes of a B+-tree are linked together to form a linked list. This is done so that the

records can be retrieved sequentially without accessing the B+-tree index. This also supports fast

processing of range-search queries as will be described later.

B+-tree operations

To understand the B+-tree operations more clearly, assume, without loss of generality, that there is a

table whose primary is a single attribute and that it has a B+-tree index organized on the PK attribute of

the table.

Searching for records that satisfy a simple condition

To retrieve records, queries are written with conditions that describe the values that the desired

records are to have. The most basic search on a table to retrieve a single record given its PK value K.

Search in a B+-tree is an alternating two-step process, beginning with the root node of the B+-tree. Say

that the search is for the record with key value K -- there can only be one record because we assume

that the index is built on the PK attribute of the table.

1. Perform a binary search on the search key values in the current node -- recall that the search key

values in a node are sorted and that the search starts with the root of the tree. We want to find the key

Ki such that Ki ≤ K < Ki+1.

2. If the current node is an internal node, follow the proper branch associated with the key Ki by

loading the disk page corresponding to the node and repeat the search process at that node.

3. If the current node is a leaf, then:

a. If K=Ki, then the record exists in the table and we can return the record associated with Ki

b. Otherwise, K is not found among the search key values at the leaf, we report that there is

no record in the table with the value K.

Inserting into a B+-tree

Insertion in a B+-tree is similar to inserting into other search trees, a new record is always inserted at

one of the leaf nodes. The complexity added is that insertion could overflow a leaf node that is already

full. When such overflow situations occur a brand new leaf node is added to the B+-tree at the same

level as the other leaf nodes. The steps to insert into a B+-tree are:

1. Follow the path that is traversed as if a Search is being performed on the key of the new record

to be inserted.

2. The leaf page L that is reached is the node where the new record is to be indexed.

48 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

3. If L is not full then an index entry is created that includes the search key value of the new row

and a reference to where new row is in the data file. We are done; this is the easy case!

4. If L is full, then a new leaf node Lnew is introduced to the B+-tree as a right sibling of L. The keys in

L along with the an index entry for the new record are distributed evenly among L and Lnew. Lnew is

inserted in the linked list of leaf nodes just to the right of L. We must now link Lnew to the tree and since

Lnew is to be a sibling of L, it will then be pointed to by the parent of L. The smallest key value of

Lnew is copied and inserted into the parent of L -- which will also be the parent of Lnew. This entire step

is known as commonly referred to as a split of a leaf node.

a. If the parent P of L is full, then it is split in turn. However, this split of an internal

node is a bit different. The search key values of P and the new inserted key must still be distributed

evenly among P and the new page introduced as a sibling of P. In this split, however, the middle key is

moved to the node above -- note, that unlike splitting a leaf node where the middle key is copied and

inserted into the parent, when you split an internal node the middle key is removed from the node

being split and inserted into the parent node. This splitting of nodes may continue upwards on the

tree.

b. When a key is added to a full root, then the root splits into two and the middle key is

promoted to become the new root. This is the only way for a B+-tree to increase in height -- when split

cascades the entire height of the tree from the leaf to the root.

Deletion

Deletion from a B+-tree again needs to be sure to maintain the property that all nodes must be at least

half full. The complexity added is that deletion could underflow a leaf node that has only the minimum

number of entries allowed. When such underflow situations take place, adjacent sibling nodes are

examined; if one of them has more than the minimum entries required then, some of its entries are

taken from it to prevent a node from "under-flowing". Otherwise, if both adjacent sibling nodes are also

at their minimum, then two of these nodes are merged into a single node. The steps to delete from a B+-

tree are:

1. Perform the search process on the key of the record to be deleted. This search will end at a leaf L.

2. If the leaf L contains more than the minimum number of elements (more than m/2 - 1), then the

index entry for the record to be removed can be safely deleted from the leaf with no further action.

3. If the leaf contains the minimum number of entries, then the deleted entry is replaced with

another entry that can take its place while maintaining the correct order. To find such entries, we

inspect the two sibling leaf nodes Lleft and Lright adjacent to L -- at most one of these may not exist.

a. If one of these leaf nodes has more than the minimum number of entries, then enough

records are transferred from this sibling so that both nodes have the same number of records. This is a

49 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

heuristic and is done to delay a future underflow as long as possible; otherwise, only one entry need

be transferred. The placeholder key value of the parent node may need to be revised.

b. If both Lleft and Lright have only the minimum number of entries, then L gives its records to

one of its siblings and it is removed from the tree. The new leaf will contain no more than the

maximum number of entries allowed. This merge process combines two subtrees of the parent, so the

separating entry at the parent needs to be removed -- this may in turn cause the parent node to

underflow; such an underflow is handled the same way that an underflow of a leaf node.

c. If the last two children of the root merge together into one node, then this merged node

becomes the new root and the tree loses a level.

Range Search

It is common to request records from a table that fall in a specified range. For example, we may want to

retrieve all employees making salaries between $50,000 and $60,000. B+-trees are exceptionally good

for range queries. Once the first record in the range has been found using the search algorithm

described above, the rest of the records in the range can be found by sequential processing the

remaining records in the leaf node, and then continuing down (actually right of the current leaf node)

the linked list of leaf nodes as far as necessary. Once a record is found that has a search key value above

the upper bound of the requested range, then the search completes. Note that to use a B+-tree index to

retrieve the employees described above, the B+-tree index must exist that has been organized using the

salary attribute of the employees table.

11.Explain Query Processing in detail.(Apr 2014)

Basic steps in query processing.

The steps involved in processing a query are

1. Parsing and translation

2. Optimization

3. Evaluation

50 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

The terms annotations and query evaluation primitive.

Annotations may state the algorithm to be used for a specific operation, or the particular index or

indices to use. A relational-algebra operation annotated with instructions on how to evaluate it is called

an evaluation primitive.

Query execution plan and query execution engine

A sequence of primitive operations that can be used to evaluate a query is a queryexecution plan

or query-evaluation plan. Figure illustrates an evaluation plan in which a particular index is specified

for the selection operation. The query-execution engine takes a query-evaluation plan, executes that

plan, and returns the answers to the query.

12.Describe Indexing and Hashing.(Nov 2014)

Indexing and Hashing

Hash tables are often used to implement associative arrays, sets and caches. Like arrays, hash

tables provide constant-time O(1) lookup on average, regardless of the number of items in the table.

While theoretically the worst-case lookup time can be as bad as O(n), this is for practical purposes

statistically impossible unless the hash function is poorly designed or unless the set of keys is

maliciously chosen with the given hash function in mind.

http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Set_%28computer_science%29
http://en.wikipedia.org/wiki/Cache
http://en.wikipedia.org/wiki/Array
http://en.wikipedia.org/wiki/Big-O_notation

51 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

Compared to other associative array data structures, hash tables are most useful when large

numbers of records are to be stored, especially if the size of the data set can be predicted.

Hash tables may be used as in-memory data structures. Hash tables may also be adopted for use

with persistent data structures; database indexes sometimes use disk-based data structures based on

hash tables, although balanced trees are more popular.

Static Hashing

Hash File Organization

1. Hashing involves computing the address of a data item by computing a function on the search

key value.

2. A hash function h is a function from the set of all search key values K to the set of all bucket

addresses B.

o We choose a number of buckets to correspond to the number of search key values we will

have stored in the database.

o To perform a lookup on a search key value , we compute , and search the bucket

with that address.

o If two search keys i and j map to the same address, because , then the

bucket at the address obtained will contain records with both search key values.

o In this case we will have to check the search key value of every record in the bucket to get

the ones we want.

o Insertion and deletion are simple.

Dynamic Hashing

1. As the database grows over time, we have three options:

o Choose hash function based on current file size. Get performance degradation as file

grows.

o Choose hash function based on anticipated file size. Space is wasted initially.

o Periodically re-organize hash structure as file grows. Requires selecting new hash

function, recomputing all addresses and generating new bucket assignments. Costly, and

shuts down database.

http://en.wikipedia.org/wiki/Persistent_data_structure
http://en.wikipedia.org/wiki/Balanced_tree

52 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

2. Some hashing techniques allow the hash function to be modified dynamically to accommodate

the growth or shrinking of the database. These are called dynamic hash functions.

o Extendable hashing is one form of dynamic hashing.

o Extendable hashing splits and coalesces buckets as database size changes.

o This imposes some performance overhead, but space efficiency is maintained.

o As reorganization is on one bucket at a time, overhead is acceptably low.

Index Definition in SQL

1. Some SQL implementations includes data definition commands to create and drop indices. The

IBM SAA-SQL commands are

An index is created by

create index <index-name> on r (<attribute-list>)

the attribute list is the list of attributes in relation r that form the search key for the index.

To create an index on bname for the branch relation: ¯create index b-index on branch

(bname)

If the search key is a candidate key, we add the word unique to the definition:

¯create unique index b-index on branch (bname)

53 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

If bname is not a candidate key, an error message will appear.

If the index creation succeeds, any attempt to insert a tuple violating this requirement will

fail.

The unique keyword is redundant if primary keys have been defined with integrity

constraints already.

2. To remove an index, the command is

3. drop index <index-name>

Multiple key Access

1. For some queries, it is advantageous to use multiple indices if they exist.

2. If there are two indices on deposit, one on bname and one on cname, then suppose we have a

query like

3. select balance

4. from deposit

5. where bname = ``Perryridge'' and balance = 1000

6. There are 3 possible strategies to process this query:

o Use the index on bname to find all records pertaining to Perryridge branch. Examine

them to see if balance = 1000

o Use the index on balance to find all records pertaining to Williams. Examine them to see if

bname = ``Perryridge''.

o Use index on bname to find pointers to records pertaining to Perryridge branch. Use

index on balance to find pointers to records pertaining to 1000. Take the intersection of

these two sets of pointers.

7. The third strategy takes advantage of the existence of multiple indices. This may still not work

well if

o There are a large number of Perryridge records AND

o There are a large number of 1000 records AND

o Only a small number of records pertain to both Perryridge and 1000.

8. To speed up multiple search key queries special structures can be maintained.

54 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

13.Describe Query Optimization in detail. (Nov 2014)

Query optimization is the process of selecting the most efficient query-evaluation plan from

among the many strategies usually possible for processing a given query, especially if the query

is complex.

Query optimization is a function of many relational database management systems. The query

optimizer attempts to determine the most efficient way to execute a given query by considering the

possible query plans.

Generally, the query optimizer cannot be accessed directly by users: once queries are submitted to

database server, and parsed by the parser, they are then passed to the query optimizer where

optimization occurs. However, some database engines allow guiding the query optimizer with hints.

A query is a request for information from a database. It can be as simple as "finding the address of a

person with SS# 123-45-6789," or more complex like "finding the average salary of all the employed

married men in California between the ages 30 to 39, that earn less than their wives." Queries results

are generated by accessing relevant database data and manipulating it in a way that yields the

requested information. Since database structures are complex, in most cases, and especially for not-

very-simple queries, the needed data for a query can be collected from a database by accessing it in

different ways, through different data-structures, and in different orders. Each different way typically

requires different processing time. Processing times of the same query may have large variance, from a

fraction of a second to hours, depending on the way selected. The purpose of query optimization, which

is an automated process, is to find the way to process a given query in minimum time. The large

possible variance in time justifies performing query optimization, though finding the exact optimal way

to execute a query, among all possibilities, is typically very complex, time consuming by itself, may be

too costly, and often practically impossible. Thus query optimization typically tries to approximate the

optimum by comparing several common-sense alternatives to provide in a reasonable time a "good

enough" plan which typically does not deviate much from the best possible result.

14. Explain about Indexing concept with respect to database system. (APRIL 2015)

A search key is any attribute or set of attribute , it need not be the primary key or a even a super key for

easy access is called Indexing.

Types of Indexing: (5 Marks)

Ordered indices: Based on a sorted ordering of the values.

http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Query_plan
http://en.wikipedia.org/wiki/Hint_(SQL)

55 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

Hash indices: Based on a uniform distribution of values across a range of bucket. The bucket to

which a value is assigned is determined by a function, called a hash function.

An index record appears for every search key value in the file. (6 Marks)

 In a dense clustering index, the index record contains search key value and a pointer to the first

data record with that search key value.

 An index record appears for only some of the search key values in a file. Such a

Indices with two or more levels are called multilevel indices, multilevel indices are closely related to the

tree structures such as binary tree used for memory indexing.

56 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p t o f C S E

11 MARKS

1. Explain authorization in SQL. With example (April 2011) [Question No. 01]

2. Explain Database design process in detail (April 2011)[Question No. 02]

3. Describe Magnetic Disk and Flash storage in detail (April 2012)[Question No. 03]

4. Explain Join operation in detail (April 2012) [Question No. 04]

5. Write short notes on (April 2013)[Question No. 05]

(a) Assertions.

(b) Security and Authorization.

6. Describe about Normalization using functional dependency (April 2013)(NOV 2015)[Question No. 06]

7. Explain referential integrity in detail (Nov 2010) [Question No. 07]

8. Explain any one Database system of your own with normalization (Nov 2010) [Question No. 08]

9. Briefly explain RAID (Nov 2012)(April 2014) [Question No. 09]

10. Explain about B+Tree index files (Nov 2012)[Question No. 10]

11. Explain Query processing in detail. (April 2014) [Question No. 11]

12. Describe Indexing and Hashing.(Nov 2014) [Question No. 12]

13. Describe Query Optimization in detail. (Nov 2014) [Question No. 13]

14. Explain about Indexing concept with respect to database system. (Apr 2015) [Question No. 14]

1 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

UNIT -IV

Query Processing: Measures of Query Cost – Selection Operation – Sorting – Join Operation – Other Operations –

Evaluation of Expressions

Query Optimization – Overview – Transformation of Relational Expressions – Estimating Statistics of

Expression Results – Choice of Evaluation Plan

Transactions – Concept – A Simple Transaction Model – Storage Structure – Transaction Atomicity and Durability
– Transaction Isolation – Serializability – Transaction Isolation and Atomicity – Transaction Isolation Levels –
Implementation of Isolation Levels – Transactions as SQL Statements

TWO MARK

1. What is transaction? (NOV 2014)(NOV 2015)

Transaction is a unit of a program execution that accesses and possibly updates various data

items

2. What are the types of transaction?

a. begin transaction

b. end transaction

3. What are the properties of transaction?

 Atomicity

 Consistency

 Isolation

 durability

4. What is atomicity?

Either all the operation of the transaction is reflected properly in the database or none are

reflected properly in the database.

5. What is consistency?

Execution of the transaction in isolation preserves the consistency of the database.

6. What is isolation?

Even though multiple transactions may execute concurrently. The system guarantees every pair

of transaction Ti and Tj.. it appears to Ti that either Tj finished the execution before Ti started.

Thus each transaction is unaware of other transaction executing concurrently in the system.

7. What is durability?

2 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

After the transaction completes successfully the change it has made to the database persist

even if there are system failures.

8. What are the operations of the transaction?

 Read(x) –which transfers the data items x from the database to the local buffer belonging

to the transaction that executed the read operation.

 Write(x)- which transfers the data items x from the local buffer of the transaction that

executed the write back to the database.

9. What is the transaction state?

 Active

 Partially committed

 Failure

 Aborted

 Committed

10. Draw the state diagram of the transaction? (APR 2014)

.

11. What is reduce waiting time?

Concurrent execution reduces unpredictable delays in a running transaction. Moreover it is

also reduces the average response time. The average time for the transaction to be

completed after it has been submitted.

12. What is serializability? (NOV 2015)

The database system must control concurrent execution of the transaction to ensure that

the database state remains consistent.

13. What are the two types of serializability?

Active

Partially

committed

failed

commited

aborted

3 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

 Conflict serializability

 View serializability

14. What is conflict serializability?

 Ii =read(q), Ij=read(q)

 Ii= read(q), Ij=write(q)

 Ii=write(q), ij=read(q)

 Ii=write(q),Ij=write(q)

15. What is view serializability?

 For each data item Q if transaction Ti reads the initial value of q in schedule S. then

the transaction Ti must in schedule S’ also reads the initial value Q.

 For each data item Q if the transaction Ti executes read(Q) in schedule S and if that

value was produced by the write(Q) operation executed by the transaction Tj.

 For each data item Q the transaction that performs the final write(Q) operation in

schedule S must perform the final write((Q) operation in schedule S’.

16. What is recoverability?

In a system that allows concurrent execution, it is necessary also to ensure that any

transaction Tj that is dependent on Ti is also aborted. To achieve this we need to place

restriction on the type of schedules permitted in the system.

17. What is cascading rollback?

The phenomenon in which single transaction failure leads to the series of transaction

rollback is called cascading rollback.

18. What is cascadeless schedule?

Cascading rollback is undesirable since it leads to the undoing of the significant amount of

work. It is desirable to restrict the schedule to those where cascading rollbacks cannot occur.

Such schedule are called cascadless schedule.

19. Basic steps in query processing.

The steps involved in processing a query are

1. Parsing and translation

2. Optimization

3. Evaluation

20. Describe the diagrammatic representation of query processing.

4 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

21. Explain the terms annotations and query evaluation primitive.

Annotations may state the algorithm to be used for a specific operation, or the particular index or

indices to use. A relational-algebra operation annotated with instructions on how to evaluate it is called

an evaluation primitive.

22. What is query execution plan and query execution engine

A sequence of primitive operations that can be used to evaluate a query is a query execution plan

or query-evaluation plan. Figure illustrates an evaluation plan in which a particular index is specified

for the selection operation. The query-execution engine takes a query-evaluation plan, executes that

plan, and returns the answers to the query.

23. What are the various measures of query cost.

The cost of query evaluation can be measured in terms of a number of different resources, including

i. disk accesses ,

ii. CPU time to execute a query

iii. the cost of communication

iv. the response time for a query-evaluation plan.

24. Explain the terms used in block transfer.

Rotational latency: waiting for the desired data to spin under the read–write head

Seek Time: the time that it takes to move the head over the desired track or cylinder

Sequential I/O: where the blocks read are contiguous on disk

5 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

Random I/O: where the blocks are noncontiguous

25. What are the basic algorithms in selection operation

 Linear Search A1 algorithm.

 Binary Search A2 algorithm

26. What is Linear search.

In a linear search, the system scans each file block and tests all records to see whether they satisfy

the selection condition. For a selection on a key attribute, the system can terminate the scan if the

required record is found, without looking at the other records of the relation.

27. What is Binary search.

If the file is ordered on an attribute, and the selection condition is an equality comparison on the

attribute, we can use a binary search to locate records that satisfy the selection. The system performs

the binary search on the blocks of the file.

28. Explain selection using index structures.

Index structures are referred to as access paths. Search algorithms that use an index are referred to as

index scans.

 A3 (primary index, equality on key). For an equality comparison on a key attribute with a

primary index, we can use the index to retrieve a single record that satisfies the

corresponding equality condition.

 A4 (primary index, equality on nonkey). We can retrieve multiple records by using a

primary index when the selection condition specifies an equality comparison on a nonkey

attribute, A. The only difference from the previous case is that multiple records may need to

be fetched.

 A5 (secondary index, equality). Selections specifying an equality condition can use a

secondary index. This strategy can retrieve a single record if the equality condition is on a

key; multiple records may get retrieved if the indexing field is not a key.

29. Explain the implementation of complex queries.

 Conjunction: A conjunctive selection is a selection of the form

 σθ1^θ2^・・・^θn(r)

 Disjunction: A disjunctive selection is a selection of the form

 σθ1٧θ2٧・・ ٧ . θn(r)

 Negation: The result of a selection σ￢θ(r) is the set of tuples of r for which the

condition θ evaluates to false.

6 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

30. What is External sorting. (Nov 2014)

Sorting of relations that do not fit in memory is called external sorting. The most commonly used

technique for external sorting is the external sort–merge algorithm. Let M denote the number of page

frames in the main-memory buffer (the number of disk blocks whose contents can be buffered in main

memory).

 In the first stage, a number of sorted runs are created; each run is sorted, but contains only some of

the records of the relation.

 In the second stage, the runs are merged. Suppose, for now, that the total number of runs, N, is less

than M, so that we can allocate one page frame to each run and have space left to hold one page of

output.

31. What is block nested join.

Block nested-loop join is a variant of the nested-loop join where every block of the inner relation

is paired with every block of the outer relation. Within each pair of blocks, every tuple in one block is

paired with every tuple in the other block, to generate all pairs of tuples. As before, all pairs of tuples

that satisfy the join condition are added to the result.

32. What are the types of join operation used.

 Nested loop join

 Block nested loop join

 Indexed nested loop join

 Merge join

 Hash join

33. What is hash table overflow?

Hash-table overflow occurs in partition i of the build relation s if the hash index on Hsi is larger

than main memory. Hash-table overflow can occur if there are many tuples in the build relation with

the same values for the join attributes, or if the hash function does not have the properties of

randomness and uniformity

34. What is Fudge factor?

We can handle a small amount of skew by increasing the number of partitions so that the expected

size of each partition (including the hash index on the partition) is somewhat less than the size of

memory. The number of partitions is therefore increased by a small value called the fudge factor.

35. What is overflow resolution?

Overflow resolution is performed during the build phase, if a hash-index overflow is detected.

Overflow resolution proceeds in this way: If Hsi , for any i, is found to be too large, it is further

7 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

partitioned into smaller partitions by using a different hash function. Similarly, Hri is also partitioned

using the new hash function, and only tuples in the matching partitions need to be joined.

36. What is overflow avoidance?

Overflow avoidance performs the partitioning carefully, so that overflows never occur during the

build phase. In overflow avoidance, the build relation s is initially partitioned into many small

partitions, and then some partitions are combined in such a way that each combined partition fits in

memory. The probe relation r is partitioned in the same way as the combined partitions on s, but the

sizes of Hri do not matter.

37. What are the ways in which pipeline can be executed.

Pipelines can be executed in either of two ways:

 Demand driven: In a demand-driven pipeline, the system makes repeated requests for

tuples from the operation at the top of the pipeline. Each time that an operation receives a request for

tuples, it computes the next tuple (or tuples) to be returned, and then returns that tuple.

 Producer driven: operations do not wait for requests to produce tuples, but instead

generate the tuples eagerly. Each operation at the bottom of a pipeline continually generates output

tuples, and puts them in its output buffer, until the buffer is full.

38. What is query optimization.(April 2014) (April 2015)

Query optimization is the process of selecting the most efficient query-evaluation plan from

among the many strategies usually possible for processing a given query, especially if the query is

complex.

39. How authorization provided to the users in SQL? (April 2011)

Developing an application using a least-privileged user account (LUA) approach is an important

part of a defensive, in-depth strategy for countering security threats. The LUA approach ensures that

users follow the principle of least privilege and always log on with limited user accounts.

Administrative tasks are broken out using fixed server roles, and the use of the sys admin fixed server

role is severely restricted.

40. What is an audit trail? (April 2011)

An audit trail is a log of changes (insert, delete, update) to the database along with information

such as which user performed the change and when the change was performed.

41. List out the various storage devices (April/May 2012)

 Storage Devices are the data storage devices that are used in the computers to store the data.

The computer has many types of data storage devices. Some of them can be classified as the removable

data Storage Devices and the others as the non removable data Storage Devices.

8 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

The memory is of two types; one is the primary memory and the other one is the secondary

memory.

The primary memory is the volatile memory and the secondary memory is the non volatile memory.

The volatile memory is the kind of the memory that is erasable and the non volatile memory is the one

where in the contents cannot be erased. Basically when we talk about the data storage devices it is

generally assumed to be the secondary memory. The secondary memory is used to store the data

permanently in the computer. The secondary storage devices are usually as follows: hard disk drives –

this is the most common type of storage device that is used in almost all the computer systems. The

other ones include the floppy disk drives, the CD ROM, and the DVD ROM. The flash memory, the USB

data card etc.

42. What are the steps in query processing? (April 2013)

 Parsing and Translation

 Optimization

 Evaluation

9 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

11 ARKS

1.Briefly explain Query processing and Optimization in Oracle. (Nov 2013) (April 2014)

(Nov 2014) (NOV 2015)

Basic Steps in Query Processing

1 Parsing and translation

2. Optimization

3. Evaluation

Parsing and translation

 translate the query into its internal form. This is then translated into relational

 algebra.

 Parser checks syntax, verifies relations Evaluation

 The query-execution engine takes a query-evaluation plan, executes that plan,

 and returns the answers to the query.

Optimization

 A relational algebra expression may have many equivalent expressions

 E.g., balance2500(balance(account)) is equivalent to

 balance(balance2500(account))

Each relational algebra operation can be evaluated using one of several different algorithms

correspondingly, a relational-algebra expression can be evaluated in many ways. Annotated

expression specifying detailed evaluation strategy is called an evaluation-plan.

 E.g., can use an index on balance to find accounts with balance < 2500,

 or can perform complete relation scan and discard accounts with balance 2500

10 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

i)Query Optimization: Amongst all equivalent evaluation plans choose the one with lowest

cost.

 Cost is estimated using statistical information from the database catalog

n e.g. number of tuples in each relation, size of tuples, etc.

In this chapter we study

 How to measure query costs

 Algorithms for evaluating relational algebra operations

 How to combine algorithms for individual operations in order to evaluate a complete

expression

ii)Measures of Query Cost

Cost is generally measured as total elapsed time for answering query

 Many factors contribute to time cost

è disk accesses, CPU, or even network communication

Typically disk access is the predominant cost, and is also relatively easy to estimate. Measured by

taking into account

 Number of seeks * average-seek-cost

 Number of blocks read * average-block-read-cost

 Number of blocks written * average-block-write-cost

è Cost to write a block is greater than cost to read a block

– data is read back after being written to ensure that the write was successful

For simplicity we just use number of block transfers from disk as the cost measure

 We ignore the difference in cost between sequential and random I/O for simplicity

 We also ignore CPU costs for simplicity

Costs depends on the size of the buffer in main memory

 Having more memory reduces need for disk access

 Amount of real memory available to buffer depends on other concurrent OS processes,

and hard to determine ahead of actual execution

 We often use worst case estimates, assuming only the minimum amount of memory

needed for the operation is available

Evaluation

Annotations may state the algorithm to be used for a specific operation, or the particular index or

indices to use. A relational-algebra operation annotated with instructions on how to evaluate it is called

an evaluation primitive.

11 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

A sequence of primitive operations that can be used to evaluate a query is a query execution plan

or query-evaluation plan. Figure illustrates an evaluation plan in which a particular index is specified

for the selection operation.

The query-execution engine takes a query-evaluation plan, executes that plan, and returns the

answers to the query.

2. Describe the following (April 2012)

 A). Transaction Isolation

 B). Serializability

A)Transaction isolation

 Transaction-processing systems usually allow multiple transactions to run concurrently.

 Allowing multiple transactions to update data concurrently causes several complications

with consistency of the data.

 There are two good reasons for allowing concurrency:

 Improved throughput and resource utilization. A transaction consists of many steps.

Some involve I/O activity; others involve CPU activity. Therefore, I/O activity can be done

in parallel with processing at the CPU. All of this increases the throughput of the system

correspondingly; the processor and disk utilization also increases.

 Reduced waiting time. There may be a mix of transactions running on a system, some

short and some long. Concurrent execution reduces the unpredictable delays in running

transactions. Moreover, it also reduces the average response time: the average time for a

transaction to be completed after it has been submitted.

 The motivation for using concurrent execution in a database is essentially the same as

the motivation for using multiprogramming in an operating system.

 Let T1 andT2 be two transactions that transfer funds from one account to another.

Transaction T1 transfers $50 from account A to account B. It is defined as:

T1: read (A);

12 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

A: =A − 50;

write (A);

read (B);

B: =B + 50;

write (B).

 Transaction T2 transfers 10 percent of the balance from account A to account B. It is

defined as:

T2: read (A);

temp: =A * 0.1;

A: =A − temp;

write (A);

read (B);

B: =B + temp;

write (B).

 Suppose the current values of accounts A and B are $1000 and $2000, respectively.

 Suppose also that the two transactions are executed one at a time in the order T1

followed by T2. This execution sequence appears as follows:

Schedule 1—a serial schedule in which T1 is followed by T2.

 The final values of accounts A and B, after the execution in this figure takes place, are

$855 and $2145, respectively.

read(A)
A := A –
50

write (A)
read(B)
B := B +
50

write(B)

read(A)
temp := A * 0.1

A := A – temp

write(A)
read(B)
B := B + temp

write(B)

13 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

 Similarly, if the transactions are executed one at a time in the order T2 followed by T1,

then the corresponding execution sequence is as follows:

Schedule 2—a serial schedule in which T2 is followed by T1.

 Again, as expected, the sum A + B is preserved, and the final values of accounts A and B

are $850 and $2150, respectively.

 The execution sequences just described are called schedules.

 suppose that the two transactions are executed concurrently as follows:

Schedule 3—a concurrent schedule equivalent to schedule 1.

read(A)
temp := A * 0.1

A := A –temp

write(A)
read(B)
B := B + 50

write(B)

read(A)
A := A -50

write(A)

read(B)
B := B + temp

write(B)

read(A)
temp := A * 0.1

A := A –temp

write(A)
read(B)
B := B + temp

write(B) read(A)
A := A -50

write(A)
read(B)
B := B + 50

write(B)

14 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

 After this execution takes place, we arrive at the same state as the one in which the

transactions are executed serially in the order T1 followed by T2. The sum A + B is indeed

preserved.

 Not all concurrent executions result in a correct state. To illustrate, consider the schedule

as follows:

 Schedule 4—a concurrent schedule.

 After the execution of this schedule, we arrive at a state where the final values of

accounts A and B are $950 and $2100, respectively.

 This final state is an inconsistent state.

B)Serializability

The database system must control concurrent execution of transactions, to ensure that

the database state remains consistent.

Since transactions are programs, it is computationally difficult to determine exactly what

operations a transaction performs and how operations of various transactions interact.

Two operations:

read and write. We thus assume that, between a read(Q) instruction and a write(Q)

instruction on a data item Q, a transaction may perform an arbitrary sequence of operations on

the copy of Q that is residing in the local buffer of the transaction.

read(A)
temp := A * 0.1

A := A –temp

write(A)
read(B) Write(A)

read(B)
B := B + 50

write(B)

read(A)
A := A -50

B := B + temp

write(B)

15 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

Thus, the only significant operations of a transaction, from a scheduling point of view, are its

read and write instructions.

Schedule3-showing only the read and write instructions

Conflict Serializability

Let us consider a schedule S in which there are two consecutive instructions Ii and Ij, of

transactions Ti and Tj , respectively (i _= j). If Ii and Ij refer to different data items, then we can

swap Ii and Ij without affecting the results of any instruction in the schedule.

However, if Ii and Ij refer to the same data item Q, then the order of the two steps may matter.

Since we are dealing with only read and write instructions, there are four cases that we need to

consider:

1. Ii = read(Q), Ij = read(Q). The order of Ii and Ij does not matter, since the same value of Q

is read by Ti and Tj , regardless of the order.

2. Ii = read(Q), Ij = write(Q). If Ii comes before Ij, then Ti does not read the value of Q that is

written by Tj in instruction Ij. If Ij comes before Ii, then Ti reads the value of Q that is

written by Tj. Thus, the order of Ii and Ij matters.

3. Ii = write(Q), Ij = read(Q). The order of Ii and Ij matters for reasons similar to those of the

previous case.

4. Ii = write(Q), Ij = write(Q). Since both instructions are write operations, the order of

these instructions does not affect either Ti or Tj . However, the value obtained by the next

read(Q) instruction of S is affected, since the result of only the latter of the two write

instructions is preserved in the database. If there is no other write(Q) instruction after Ii

and Ij in S, then the order of Ii and Ij directly affects the final value of Q in the database

state that results from schedule S.

T1 T2

read(A)

write(A)

read(B)

write(B)

read(A)

write(A)

read(B)

write(B)

16 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

The write(A) instruction of T1 conflicts with the read(A) instruction of T2.

However, the write(A) instruction of T2 does not conflict with the read(B) instruction of T1,

because the two instructions access different data items.

View Serializability

Consider two schedules S and S_, where the same set of transactions participates in both

schedules. The schedules S and S_ are said to be view equivalent if three conditions are met:

1. For each data item Q, if transaction Ti reads the initial value of Q in schedule S, then

transaction Ti must, in schedule S_, also read the initial value of Q.

2. For each data item Q, if transaction Ti executes read(Q) in schedule S, and if that value was

produced by a write(Q) operation executed by transaction Tj , then the read(Q) operation of

transaction Ti must, in schedule S_, also read the value of Q that was produced by the same

write(Q) operation of transaction Tj .

3. For each data item Q, the transaction (if any) that performs the final write(Q) operation in

schedule S must perform the final write(Q) operation in schedule S_.

Schedule 8.

The concept of view equivalence leads to the concept of view serializability. We say that a

schedule S is view serializable if it is view equivalent to a serial schedule.

T1 T2

read(A)

A:=A-50

Write(A)

read(B)

B:=B+50

write(B)

read(B)

B:=B-10

write(B)

read(A)

A:=A+10

write(A)

17 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

Schedule 9—a view-serializable schedule.

 6. Discuss fixed length records in detail with an example

FIXED-LENGTH RECORDS:

For an example, let us consider a file of account records for our bank database. Each record

of this file is defined as:

 type deposit=record

 account-number:char(10);

 branch-name:char(22);

balance:real;

end

 If we assume that each character occupies 1 byte and that a real occupies 8 bytes, our

account record is 40 bytes long. A simple approach is to use the first 40 bytes for the first

record, the next 40 bytes for the second record, and so on.

 Though, we have two problems with this simple approach:

1. It is difficult to delete a record from this structure. The space occupied by the record to be

deleted must be filled with some other record of this file, or we must have way of marking

deleted records so that they can be ignored.

2. Unless the block happens to be a multiple of 40(which is unlikely), some records will cross

block boundaries. That is, part of the record will be stored in one block and part in another. It

would thus require two block accesses to read or write such a record.

3. When a record is deleted, we could move the record that came after it into the space formerly

occupied by the deleted record and so on, until every record following the deleted record has

been moved ahead.

FIG 1.2 ,WITH RECORD 2 DELETED AND ALL RECORDS MOVED

T3 T4 T6

Read(Q)

Write(Q)

Write(Q)

Write(Q)

18 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

Record 0 A-102 Perryridge 400

Record 1 A-305 Round Hill 350

Record 3 A-101 Downtown 500

Record 4 A-222 Redwood 700

Record 5 A-201 Perryridge 900

Record 6 A-217 Brighton 750

Record 7 A-110 Downtown 600

Record 8 A-218 Perryridge 700

 It might be easier simply to move the final record of the file into the space occupied by the

deleted record.(fig-1.3)

Fig-1.3 WITH RECORD 2 DELETED AND FINAL RECORD MOVED

Record 0 A-102 Perryridge 400

Record 1 A-305 Round Hill 350

Record 8 A-218 Perryridge 700

Record 3 A-101 Downtown 500

Record 4 A-222 Redwood 700

Record 5 A-201 Perryridge 900

Record 6 A-217 Brighton 750

Record 7 A-110 Downtown 600

 A simple marker on a deleted record is not sufficient, since it is hard to find this available

space when an insertion is being done. Thus, we need to introduce an additional structure.

 At the beginning of the file, we allocate a certain number of bytes as a FILE HEADER.

 The header will contain a variety of information about the file.

 For now, all we need to store there is the address of the first record whose contents are

deleted. We use this first record to store the address of the second available record and so

on.

 These deleted records form a linked list, which is often referred to as a FREE LIST.

Fig 1.4, WITH FREE LIST AFTER DELETION OF RECORDS 1,4,AND 6

Header

Record 0 A-102 Perryridge 400

Record 1

19 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

Record 2 A-215 Mianus 700

Record 3 A-101 Downtown 500

Record 4

Record 5 A-201 Perryridge 900

Record 6

Record 7 A-110 Downtown 600

Record 8 A-218 Perryridge 700

 On insertion of a new record, we use the record pointed to by the header.

 We change the header pointer to point to the next available record. If no space is available,

we add the new file to the end of the record.

 NOTE: Insertion and deletion for files of fixed-length records are simple to implement,

because

 The space made available by a deleted record is exactly the space needed to insert a record.

An inserted record may not fit in the space left free by a deleted record, or it may fill only

part of that space.

8. What is the transactions isolation level in SQL? How to implementation of isolation

level. Discuss it.

 isolation levels:

Serializable

Repeatable read

Read committed

Read uncommitted

Implementation:

Locking

Timestamps

Multiple Versions and Snapshot isolation

Note:

Refer book for notes

20 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

9. Explain about Transaction control in detail. (April 2015) (11 Marks)

TRANSACTIONS

 Collections of operations that form a single logical unit of work are called as transactions.

 A transaction is a unit of program execution that accesses and possibly updates various data items.

 To ensure integrity of the data, the database system maintain the following properties of the

transactions:

 Atomicity. Either all operations of the transaction are reflected properly in the database, or none.

 Consistency. Execution of a transaction in isolation (that is, with no other transaction executing

concurrently) preserves the consistency of the database.

 Isolation. Even though multiple transactions may execute concurrently, the system guarantees that,

for every pair of transactions Ti and Tj, it appears to Ti that either Tj finished execution before Ti

started, or Tj started execution after Ti finished. Thus, each transaction is unaware of other

transactions executing concurrently in the system.

 Durability. After a transaction completes successfully, the changes it has made to the database

persist, even if there are system failures.

Transactions access data using two operations:

i. read(X), which transfers the data item X from the database to a local buffer

belonging to the transaction that executed the read operation.

ii. write(X), which transfers the data item X from the local buffer of the transaction

that executed the write back to the database.

Transaction State: (April 2014)

A transaction must be in one of the following states:

1. Active, the initial state; the transaction stays in this state while it is executing.

2. Partially committed, after the final statement has been execute.

3. Failed, after the discovery that normal execution can no longer Proceed.

4. Aborted, after the transaction has been rolled back and the database has been restored to

its state prior to the start of the transaction.

5. Committed, after successful completion.

 A transaction starts in the active state.

 When it finishes its final statement, it enters the partially committed state.

 The database system then writes out enough information to disk.

 If a transaction enters the failed state such a transaction must be rolled back.

 Then, it enters the aborted state. At this point, the system has two options:

 • It can restart the transaction.

21 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

 • It can kill the transaction.

 The state diagram corresponding to a transaction appears as follows:

Implementation of

Atomicity and Durability:

 Recovery- management

component of a database system can support atomicity and durability by a variety of

schemes.

Shadow Copy

 It is simple, but extremely inefficient

 It is based on making copies of the database, called shadow copies, assumes that only one

transaction is active at a time.

 A pointer called db-pointer is maintained on disk; it points to the current copy of the

database.

 A transaction that wants to update the database,

o first creates a complete copy of the database

o All updates are done on the new database copy,

o leaving the original copy, the shadow copy, untouched.

o If at any point the transaction has to be aborted, the system merely deletes the

new copy.

o The old copy of the database has not been affected.

22 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

Shadow-copy technique for atomicity and durability.

 The transaction is said to have been committed at the point where the updated db-

pointer is written to disk.

 If the transaction fails at any time before db-pointer is updated, the old contents of the

database are not affected.

 Suppose that the system fails at any time before the updated db-pointer is written to

disk.

 Then, when the system restarts, it will read db-pointer and will thus see the original

contents of the database, and none of the effects of the transaction will be visible on the

database.

 Next, suppose that the system fails after db-pointer has been updated on disk.

 Before the pointer is updated, all updated pages of the new copy of the database were

written to disk.

 Thus, the atomicity and durability properties of transactions are ensured by the shadow-

copy implementation of the recovery-management component.

11.Explain the transactions properties in detail with examples

TRANSACTIONS

 Collections of operations that form a single logical unit of work are called as transactions.

Old copy of
database

Old copy of
database
(to be
deleted)

New copy of
database

db_pointer db_point
er

(a)Before update (b)After update

23 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

 A database system must ensure proper execution of transactions despite failures—either the

entire transaction executes, or none of it does.

 A transaction is a unit of program execution that accesses and possibly updates various data

items.

 Usually, a transaction is initiated by a user program written in a High-level data-manipulation

language or programming language, where it is delimited by statements (or function calls) of the

form begin transaction and end transaction.

 To ensure integrity of the data, the database system maintain the following properties of the

transactions:

 Atomicity. Either all operations of the transaction are reflected properly in the database, or

none are.

 Consistency. Execution of a transaction in isolation (that is, with no other transaction

executing concurrently) preserves the consistency of the database.

 Isolation. Even though multiple transactions may execute concurrently, the system

guarantees that, for every pair of transactions Ti and Tj, it appears to Ti that either Tj finished

execution before Ti started, or Tj started execution after Ti finished. Thus, each transaction is

unaware of other transactions executing concurrently in the system.

 Durability. After a transaction completes successfully, the changes it has made to the

database persist, even if there are system failures.

 Properties of Transactions

ATOMICITY

all or nothing

CONSISTENCY

no violation of integrity constraints

ISOLATION

concurrent changes invisible Þserializable

DURABILITY

committed updates persist

 These properties are often called the ACID properties; the acronym is derived from the first

letter of each of the four properties.

24 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

 Transactions access data using two operations:

1. read(X), which transfers the data item X from the database to a local buffer belonging to

the transaction that executed the read operation.

2. write(X), which transfers the data item X from the local buffer of the transaction that

executed the write back to the database.

 Let Ti be a transaction that transfers $50 from account A to account B. This transaction can be

defined as

Ti: read (A);

A: = A − 50;

write (A);

read (B);

B: = B + 50;

write (B).

• Consistency: The consistency requirement here is that the sum of A and B be unchanged by the

execution of the transaction.

 • Atomicity: Suppose that, just before the execution of transaction Ti the values of accounts A and B

are $1000 and $2000, respectively. Suppose that the failure happened after the write (A) operation

but before the write (B) operation. In this case, the values of accounts A and B reflected in the

database are $950 and $2000. The system destroyed $50 as a result of this failure. Such a state is

termed as inconsistent state. If the atomicity property is present, all actions of the transaction are

reflected in the database, or none are.

• Durability: The durability property guarantees that, once a transaction completes successfully, all

the updates that it carried out on the database persist, even if there is a system failure after the

transaction completes execution. We can guarantee durability by ensuring that either

 The updates carried out by the transaction have been written to disk before the transaction

completes.

25 | P a g e D a t a b a s e M a n a g e m e n t S y s t e m s D e p a r t m e n t o f C S E

 Information about the updates carried out by the transaction and written to disk is sufficient

to enable the database to reconstruct the update when the database system is restarted after

the failure.

• Isolation: Even if the consistency and atomicity properties are ensured for each transaction, if

several transactions are executed concurrently, their operations may interleave in some undesirable

way, resulting in an inconsistent state. A way to avoid the problem of concurrently executing

transactions is to execute transactions serially—that is, one after the other. Ensuring the isolation

property is the responsibility of a component of the database system called the concurrency-control

component executes transactions serially—that is, one after the other.

UNIVERSITY QUESTIONS

2. Describe the following (April 2012) (April 2014)[Question No.: 02]

 A). Transaction Isolation & Transaction State

 B). Serializability , Conflict Serializability (NOV 2015)

3. Discuss about recovery and Atomicity (April 2012) [Question No.: 05]

4. Discuss fixed length records in detail with an example. (April 2013)[Question No.: 06]

5. Explain storage access in detail (Nov 2010) [Question No.: 07]

6. What is the transactions isolation level in SQL? How to implementation of isolation level.

Discuss it. [Question No.: 08]

7. Explain about the Concurrency Control. (NOV 2014)[Question No.: 04]

8. Explain about the Recovery System for Database Management System. (NOV 2014)

 [Question No.: 05]

9. Explain about Transaction control in detail. (APRIL 2015) [Question No.: 09]

10. Briefly explain Query processing and Optimization in Oracle. (Nov 2013) (April 2014) (Nov 2014)

(NOV 2015) [Question No.: 10]

P a g e | 1 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

UNIT –V

Concurrency Control – Lock Based Protocols – Deadlock Handling – Multiple Granularity – Timestamp Based

Protocols – Validation Based Protocols – Multiversion Schemes – Snapshot Isoloation – Insert Operations, Delete

Operations and Predicate Reads – Weak Levels of Consistency – Concurrency in Index Structures – Recovery –

Failure Classification – Storage – Recovery and Atomicity – Recovery Algorithm – Buffer Management – Failure

with Loss of Nonvolatile Storage – Early Lock Release and Logical Undo Operations.

Case Studies IBM DB2 Universal Database – My SQL.

1. What are the two types of locks? (APR 2014)(NOV 2015)

 Shared lock (0r) Term lock- if the transaction Ti has obtained the shared mode lock(

denoted by S) on item Q then Ti can read but cannot write Q

 Exclusive lock- if the transaction Ti has obtained the exclusive mode lock(denoted by X)

on item Q then Ti can both read and write Q.

2. What is deadlock?

The state where neither of these transaction can ever proceed with its normal execution.

This situation is called deadlock.

3. What is locking protocol?

Each transaction in the system follows the set of rules called locking protocol, indicating

when a transaction may lock and unlock each of the data item.

4. What are the two phases of the locking protocol?

 Growing phase- a transaction may obtain locks but may not release any lock.

 Shrinking phase- a transaction may release lock but may not obtain any new lock

5. What is timestamp based protocol?

The method of determining the serializability order is to select an ordering among

transaction in advance. The common method for doing so is to use a timestamp ordering

scheme.

6. What is timestamp?

With each transaction Ti in the system , we associate the unique fixed timestamp denoted

by the TS(Ti). This timestamp is assigned by the database system before the transaction

Ti starts the execution.

7. What are the two timestamp values?

P a g e | 2 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

 W-timestamp(Q) – denotes the largest timestamp of any transaction that

executed write(Q) successfully.

 R-timestamp(Q)- . denotes the largest timestamp of any transaction that executed

read(Q) successfully.

8. What is timestamp ordering protocol?

Timestamp ordering protocol ensures that any conflicting read and write operation are

executed in the timestamp order.

9. What is Thomas’ write protocol?

The modification of the timestamp ordering protocol is called thomas’ write protocol.

Suppose the transaction Ti issues write(Q)

 If TS(Ti)< R-timestamp(Q) then the value of Q that Ti producing was

previously needed and that it had been assumed that the value would never

been produced. Hence the system rejects the write operation and rolls Ti back.

 If TS(Ti)<W-timestamp(Q) then Ti is attempting to write an obsolete value of Q.

hence this write operation can be ignored.

 Otherwise the system executes the write operation and sets W-timestamp(Q)

to TS(Ti).

10. What are the three phases in validation based protocol?

 Read phase

 Validation phase

 Write phase

11. What are the three different timestamp in validation based protocol?

 Start(Ti)

 Validation(Ti)

 Finish(Ti)

12. What is the optimistic concurrency control?

The transaction executes optimistically assuming they will be able to finish execution and

validate at the end. This validation scheme is called optimistic concurrency control

13. What the two principle methods in the deadlock problem?

 Deadlock prevention

 Deadlock detection and recovery

P a g e | 3 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

14. What are the two types of deadlock prevention scheme using timestamp?

 Wait – die scheme is a non preemptive technique.

 Wound-wait scheme is a preemptive scheme

15. What is starvation?

 No transaction gets rolled back repeatedly and is never allowed to make progress.

16. What are the actions to be followed to recover from deadlock?

 Selection of a victim

 Rollback

 Starvation

17. What are the classifications of failure?

 Transaction failure

 Logical error

 System error

 System crash

 Disk failure

18. What is meant by Log Based Recovery? (NOV 2014)(NOV 2015)

 A log is kept on stable storage.

 The log is a sequence of log records, and maintains a record of update activities on the

database.

 When transaction Ti starts, it registers itself by writing a<Ti

start>log record

 Before Ti executes write(X), a log record <Ti, X, V1, V2>is written,

 where V1 is the value of X before the write, and V2 is the value to be written to x.

 Log record notes that Ti has performed a write on data item

19. What are the properties of transactions? (April 2015)

 ACID property: Atomicity, Consistency, Isolation and Durability

20. Distinguish between optimization and pessimistic locking (April 2015)

 In pessimistic locking, when a user opens a data to update it, a lock is granted. Other users can

only view the data until the whole transaction of the data update is completed.

P a g e | 4 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

 In optimistic locking, a data is opened for updating by multiple users. A lock is granted only

during the update transaction and not for the entire session. Due to this concurrency is

increased and is a practical approach of updating the data.

21. What is PostgreSQL?

PostgreSQL (pronounced "post-gress-Q-L") is an open source relational database management

system (DBMS) developed by a worldwide team of volunteers. PostgreSQL is not controlled by any

corporation or other private entity and the source code is available free of charge.

22. What is Oracle?

This is a suite of tools for various aspects of application development, including tools for forms

development, data modeling, reporting, and querying. The suite supports the UML standard for

development modeling. Oracle Repository provides configuration management for database objects,

forms applications, Java classes, ML files, and other types of files

23. What is IBM DB2 Universal Database?

DB2 has a long history and is considered by many to have been the first database product to use SQL

(also developed by IBM) although Oracle released a commercial SQL database product somewhat

earlier than IBM.

24. What is My SQL?

My SQL is a relational database management system (RDBMS), and ships with no GUI tools to

administer My SQL databases or manage data contained within the databases. Users may use the

included command line tools, or use My SQL "front-ends", desktop software and web applications that

create and manage My SQL databases, build database structures, back up data, inspect status, and work

with data records.

25. What is Microsoft SQL Server?

Microsoft SQL Server is a relational database management system developed by Microsoft. As a

database, it is a software product whose primary function is to store and retrieve data as requested by

other software applications, be it those on the same computer or those running on another computer

across a network (including the Internet).

26. What is the database design tool used in Oracle?

The major database design tool used in Oracle is Oracle Designer, which translates business logic

and data flow into a schema definitions and procedural scripts for application logic. Oracle Designer

stores the design in Oracle Repository, which serves as a single point of metadata for the application.

27. What is a Warehouse Builder?

http://searchenterpriselinux.techtarget.com/definition/open-source
http://searchsqlserver.techtarget.com/definition/database-management-system
http://searchsoa.techtarget.com/definition/source-code
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Oracle_Corporation
http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Command_line
http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Microsoft

P a g e | 5 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

Warehouse Builder is a tool for design and deployment of all aspects of a data warehouse, including

schema design, data mapping and transformations, data load processing, and metadata management.

Oracle Warehouse Builder supports both 3NF and star schemas and can also import designs from

Oracle Designer.

28. What is Oracle Discoverer?

Oracle Discoverer is a Web-based, ad-hoc query, reporting, analysis and Web publishing tool for

end users and data analysts. It allows users to drill up and down on result sets, pivot data, and store

calculations as reports that can be published in a variety of formats such as spreadsheets or HTML.

29. What is Oracle Express Server?

Oracle Express Server is a multidimensional database server. It supports a wide variety of

analytical queries as well as forecasting, modeling and scenario management.

30. State the Object - Relational Features in Oracle. (APRIL 2014)

Oracle has extensive support for object – relational constructs, including:

Object Types

Collection Types

Object Tables

Table Functions

Object Views

Methods

User – defined aggregate functions

XML data types

31. What is a segment?

The space in a table is divided into units, called segments, that each contains data for a specific data

structure. There are four types of segments.

1. Data Segments

2. Index Segments

3. Temporary Segments

4. Rollback Segments

32. What are the ways by which partitioning is provided by Oracle?

Oracle supports various kinds of horizontal partitioning of tables and indices, and this feature plays

a major role in Oracles’ ability to support very large databases. The several types of partitioning

provided are:

1. Range Partitioning

2. Hash Partitioning

P a g e | 6 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

3. Composite Partitioning

4. List Partitioning

33. What are the various access methods provide by Oracle?

Data can be accessed through a variety of access method:

1. Full table scan.

2. Index scan.

3. Index fast full scan.

4. Index joins.

5. Cluster and hash cluster access.

34. State some of the major types of transformations and rewrites supported by Oracle. (NOV 2014)

Some of the major types of transformations and rewrites supported by Oracle are as follows:

1. View merging

2. Complex view merging

3. Sub query flattening

4. Materialized view rewrite

5. Star transformation.

35. What is SQL* Loader?

Oracle has a direct load utility, SQL* Loader, that supports fast parallel loads of large amounts of

data from external files. It supports variety of data formats and it can perform various filtering

operations on the data being loaded.

36. What is Free Space Control Record?

DB2 uses a space map record called Free Space Control Record (FSCR) to find free space in the table.

The FCSR record usually contains a space map for 500 pages.

37. What are the various access methods supported by DB2?

DB2 supports a comprehensive set of access methods on relational tables, including:

1. Table scan

2. Index scan

3. Index-only scan

4. List pre fetch scan

5. Index and-ing scan

6. Index or-ing scan

38. State the various modes provided by DB2 for isolation.

For isolation, DB2 supports the repeatable read (RR), read stability (RS), cursor stability (CS), and

uncommitted read (UR) modes.

P a g e | 7 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

39. What is DB2 Data Propagator?

DB2 Data Propagator is a product in the DB2 family that provides replication of data among DB2,

other relational database systems such as Oracle, Microsoft SQL Server, Sybase SQL Server, and

Informix, and non relational data sources.

40. State the various tools provided by DB2 for administration.

Additionally, DB2 supports tools such as:

7. Audit facility – maintaining audit trace of database actions.

8. Governor facility – controls the priority and execution times.

9. Query patroller facility – managing the query jobs in the system.

10. Trace and diagnostic facility for debugging.

11. Event monitoring facility – tracks the resources and events during system execution.

41. What are the uses of SQL Query Analyzer?

A database administrator or developer can use SQL Query Analyzer to:

1. Analyze queries.

2. Format SQL queries.

3. Use templates for stores procedures, functions, and basic SQL statements.

4. Drag object names from the Object Browser to the Query window.

5. Define personal keystroke and toolbar options.

42. What is SQL Profiler? (APRIL 2014) (NOV 2014)

SQL Profiler is a graphical utility that allows database administrators to monitor and record

database activity. SQL Profiler can display all server activity in real time, or it can create filters that

focus on the actions of particular users, applications, or types of commands.

43. What are the various stages in compiling an SQL Statement?

An SQL statement is compiled as follows.

1. Parsing / binding.

2. Simplification / normalization.

3. Cost-based optimization.

4. Plan preparation.

44. How is logging implemented in SQL Server?

The transaction log records all changes made to the database and stores enough information to

allow any changes to be undone (rolled back) or redone (rolled forward) in the event of a system failure

of rollback request.

P a g e | 8 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

45. What are the different uses of memory within SQL Server process?

There are many different uses of memory within the SQL Server Process:

1. Buffer pool.

2. Dynamic memory allocation.

3. Plan and execution cache.

4. Large memory grants.

46. When we call a transaction is terminated? (April 2011)

 As long as you don't COMMIT or ROLLBACK a transaction, it's still "running" and potentially

holding locks.

 If your client (application or user) closes the connection the database, any still running

transactions will be rolled back and terminated.

47. What are errors cause a transaction failure? (April 2011)

 Transaction failure

 Logical error

 System error

 System crash

 Disk failure

48. What is the use pivot operator? (April/May 2012)

PIVOT can be used to generate cross tabulation reports to summarize data as it creates a more

easy understandable data in a user friendly format. PIVOT rotates a table-valued expression by turning

the unique values from one column in the expression into multiple columns in the output i.e it rotates a

rows to columns and aggregations where they are required on any remaining column values that are

wanted in the final output.

49. Explain a shadow copy scheme (April 2013)

It is simple, but efficient, scheme called the shadow copy schemes. It is based on making copies

of the database called shadow copies that one transaction is active at a time. The scheme also assumes

that the database is simply a file on disk.

50. Mention the two approaches to manage the Database buffer. (April 2013)

A buffer is an 8-KB page in memory, the same size as a data or index page. Thus, the buffer cache

is divided into 8-KB pages. The buffer manager manages the functions for reading data or index pages

from the database disk files into the buffer cache and writing modified pages back to disk. A page

remains in the buffer cache until the buffer manager needs the buffer area to read in more data. Data is

P a g e | 9 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

written back to disk only if it is modified. Data in the buffer cache can be modified multiple times before

being written back to disk. For more information, see Reading Pages and Writing Pages.

51. Name any four query languages (April 2013)

 SQL

 MY SQL

 Oracle

 MS Access

52. What is locking protocol? (Nov 2010)

A lock is a mechanism to control concurrent access to a data item. Data items can be locked in two

modes :

1. exclusive (X) mode. Data item can be both read as well as written. X-lock is requested using lock-X

instruction.

2. shared (S) mode. Data item can only be read. S-lock is requested using lock-S instruction. Lock

requests are made to concurrency-control manager

54. List any 4 DB2 background process. (April 2013)

db2agent - For user process

db2cart - for archive

db2dlock - dead lock detector

db2event - event handler

db2fcmdm - FCM daemon

55. Name any 4 query Languages. (April 2013)

 DQL[Doctrine Query Language],PHQL[Phalcon Query Language], SQL[Structure Query Language]

and XML Query Language.

56. What are the features of DB2? (April 2015)

CPU/Performance Improvements

Virtual Storage Enhancements

Security Extensions

Improved Catalog Concurrency

57. State any four background process in Oracle? (April 2015)

Checkpoint Process (CKPT)

System Monitor Process (SMON)

Process Monitor Process (PMON)

http://technet.microsoft.com/en-us/library/ms191475(v=sql.105).aspx
http://technet.microsoft.com/en-us/library/aa337560(v=sql.105).aspx
https://docs.oracle.com/cd/B19306_01/server.102/b14220/process.htm#i24678
https://docs.oracle.com/cd/B19306_01/server.102/b14220/process.htm#i24682
https://docs.oracle.com/cd/B19306_01/server.102/b14220/process.htm#i24686

P a g e | 10 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

Recoverer Process (RECO)

58. What is your understanding about atomicity?(NOV 2015)

 Atomicity. In a transaction involving two or more discrete pieces of information, either all of the pieces

 are committed or none are.

https://docs.oracle.com/cd/B19306_01/server.102/b14220/process.htm#i24691

P a g e | 11 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

11 MARKS

1. Explain Microsoft SQL server architecture. (April 2012) (Nov 2014)

Microsoft SQL Server is a relational database management system developed by Microsoft. As a

database, it is a software product whose primary function is to store and retrieve data as requested by

other software applications, be it those on the same computer or those running on another computer

across a network (including the Internet). There are at least a dozen different editions of Microsoft SQL

Server aimed at different audiences and for workloads ranging from small single-machine applications

to large Internet-facing applications with many concurrent users. Its primary query languages are T-

SQL and ANSI SQL.

Architecture

The protocol layer implements the external interface to SQL Server. All operations that can be invoked

on SQL Server are communicated to it via a Microsoft-defined format, called Tabular Data Stream (TDS).

TDS is an application layer protocol, used to transfer data between a database server and a client.

Initially designed and developed by Sybase Inc. for their Sybase SQL Server relational database engine

in 1984, and later by Microsoft in Microsoft SQL Server, TDS packets can be encased in other physical

transport dependent protocols, including TCP/IP, Named pipes, and Shared memory. Consequently,

access to SQL Server is available over these protocols. In addition, the SQL Server API is also exposed

over web services.[42]

2. Give an overview of IBM DB2 process and architecture in detail. (April 2013) (Nov 2013)

DB2 has a long history and is considered by many[who?] to have been the first database product to

use SQL (also developed by IBM) although Oracle released a commercial SQL database product

somewhat earlier than IBM did.

The name DB2 was first given to the Database Management System or DBMS in 1983 when IBM

released DB2 on its MVS mainframe platform. Prior to this, a similar product was named SQL/DS on the

VM platform. The earlier System 38 platform also contained a relational DBMS. System Relational, or

System R, was a research prototype developed in the 1970s. DB2 has its roots back to the beginning of

the 1970s when E.F. Codd, working for IBM, described the theory of relational databases and in June

1970 published the model for data manipulation. To apply the model Codd needed a relational database

language he named Alpha. At the time IBM didn't believe in the potential of Codd's ideas, leaving the

implementation to a group of programmers not under Codd's supervision, who violated several

fundamentals of Codd's relational model; the result was Structured English QUEry Language or

SEQUEL. When IBM released its first relational database product, they wanted to have a commercial-

http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Query_language
http://en.wikipedia.org/wiki/Transact-SQL
http://en.wikipedia.org/wiki/Transact-SQL
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Tabular_Data_Stream
http://en.wikipedia.org/wiki/Sybase_SQL_Server
http://en.wikipedia.org/wiki/TCP/IP
http://en.wikipedia.org/wiki/Named_pipe
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Microsoft_SQL_Server#cite_note-storageengine-43
http://en.wikipedia.org/wiki/Wikipedia:Avoid_weasel_words
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Oracle_Corporation
http://en.wikipedia.org/wiki/DBMS
http://en.wikipedia.org/wiki/Multiple_Virtual_Storage
http://en.wikipedia.org/wiki/SQL/DS
http://en.wikipedia.org/wiki/IBM_System_R
http://en.wikipedia.org/wiki/Edgar_F._Codd

P a g e | 12 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

quality sublanguage as well, so it overhauled SEQUEL and renamed the basically new language (System

Query Language) SQL to differentiate it from SEQUEL.

When Informix acquired Illustra and made their database engine an object-SQL DBMS by introducing

their Universal Server, both Oracle and IBM followed suit by changing their database engines to be

capable of object-relational extensions. In 2001, IBM bought Informix and in the following years

incorporated Informix technology into the DB2 product suite. Today, DB2 can technically be considered

to be an object-SQL DBMS.

For some years DB2, as a full-function DBMS, was exclusively available on IBM mainframes. Later IBM

brought DB2 to other platforms, including OS/2, UNIX and Windows servers, then Linux (including

Linux on zSeries) and PDAs. This process occurred through the 1990s. The inspiration for the

mainframe version of DB2's architecture came in part from IBM IMS, a hierarchical database, and its

dedicated database manipulation language, IBM DL/I. DB2 is also embedded in the i5/OS operating

system for IBM System i (iSeries, formerly the AS/400), and versions are available for z/VSE and z/VM.

An earlier version of the code that would become DB2 LUW (Linux, Unix, Windows) was part of

an Extended Edition component of OS/2 called Database Manager. IBM extended the functionality of

Database Manager a number of times, including the addition of distributed database functionality that

allowed shared access to a database in a remote location on a LAN. Eventually IBM declared that

insurmountable complexity existed in the Database Manager code, and took the difficult decision to

completely rewrite the software in their Toronto Lab. The new version of Database Manager, called DB2

like its mainframe parent, ran on the OS/2 and RS/6000 platforms, was called DB2/2 and DB2/6000

respectively. Other versions of DB2, with different code bases, followed the same '/' naming convention

and became DB2/400 (for the AS/400), DB2/VSE (for the DOS/VSE environment) and DB2/VM (for the

VM operating system). IBM lawyers stopped this handy naming convention from being used and

decided that all products needed to be called "product FOR platform" (for example, DB2 for OS/390).

The next iteration of the mainframe and the server-based products were named DB2 Universal

Database (or DB2 UDB), a name that had already been used for the Linux-Unix-Windows version, with

the introduction of widespread confusion over which version (mainframe or server) of the DBMS was

being referred to. At this point, the mainframe version of DB2 and the server version of DB2 were coded

in entirely different languages (PL/S for the mainframe and C++ for the server), but shared similar

functionality and used a common architecture for SQL optimization: the Starburst Optimizer.

Over the years DB2 has both exploited and driven numerous hardware enhancements,

particularly on IBM System z with such features as Parallel Sysplex data sharing. In fact, DB2 UDB

Version 8 for z/OS now requires a 64-bit system and cannot run on earlier processors, and DB2 for

z/OS maintains certain unique software differences in order to serve its sophisticated customers.

http://en.wikipedia.org/wiki/Informix
http://en.wikipedia.org/wiki/Illustra
http://en.wikipedia.org/wiki/Object-relational_database
http://en.wikipedia.org/wiki/Informix
http://en.wikipedia.org/wiki/Object-relational_database
http://en.wikipedia.org/wiki/IBM_mainframe
http://en.wikipedia.org/wiki/OS/2
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Linux_on_zSeries
http://en.wikipedia.org/wiki/Personal_digital_assistant
http://en.wikipedia.org/wiki/Information_Management_System
http://en.wikipedia.org/wiki/Data_Language_Interface
http://en.wikipedia.org/wiki/I5/OS
http://en.wikipedia.org/wiki/System_i
http://en.wikipedia.org/wiki/ISeries
http://en.wikipedia.org/wiki/AS/400
http://en.wikipedia.org/wiki/Z/VSE
http://en.wikipedia.org/wiki/Z/VM
http://en.wikipedia.org/wiki/OS/2
http://en.wikipedia.org/wiki/LAN
http://en.wikipedia.org/wiki/System_z
http://en.wikipedia.org/wiki/IBM_Parallel_Sysplex
http://en.wikipedia.org/wiki/Z/OS
http://en.wikipedia.org/wiki/64-bit

P a g e | 13 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

Although the ultimate expression of software-hardware co-evolution is the IBM mainframe, to some

extent that phenomenon occurs on other platforms as well, as IBM's software engineers collaborate

with their hardware counterparts.

In the mid-1990s, IBM released a clustered DB2 implementation called DB2 Parallel Edition, which

initially ran on AIX. This edition allowed scalability by providing a shared nothing architecture, in which

a single large database is partitioned across multiple DB2 servers that communicate over a high-speed

interconnect. This DB2 edition was eventually ported to all Linux, UNIX, and Windows (LUW) platforms

and was renamed to DB2 Extended Enterprise Edition (EEE). IBM now refers to this product as the

Database Partitioning Feature (DPF) and sells it as an add-on to their flagship DB2 Enterprise product.

In mid 2006, IBM announced "Viper," which is the codename for DB2 9 on both distributed

platforms and z/OS. DB2 9 for z/OS was announced in early 2007. IBM claimed that the new DB2 was

the first relational database to store XML "natively". Other enhancements include OLTP-related

improvements for distributed platforms, business intelligence/data warehousing-related

improvements for z/OS, more self-tuning and self-managing features, additional 64-bit exploitation

(especially for virtual storage on z/OS), stored procedure performance enhancements for z/OS, and

continued convergence of the SQL vocabularies between z/OS and distributed platforms.

In October 2007, IBM announced "Viper 2," which is the codename for DB2 9.5 on the

distributed platforms. There were three key themes for the release, Simplified Management, Business

Critical Reliability and Agile XML development.

In June 2009, IBM announced "Cobra" (the codename for DB2 9.7 for LUW). DB2 9.7 adds data

compression for database indexes, temporary tables, and large objects. DB2 9.7 also supports native

XML data in hash partitioning (database partitioning), range partitioning (table partitioning), and

multi-dimensional clustering. These native XML features allows users to directly work with XML in data

warehouse environments. DB2 9.7 also adds several features that make it easier for Oracle Database

users to work with DB2. These include support for the most commonly-used SQL syntax, PL/SQL

syntax, scripting syntax, and data types from Oracle Database. DB2 9.7 also enhanced its concurrency

model to exhibit behavior that is familiar to users of Oracle Database and Microsoft SQL Server.

In October 2009, IBM introduced its second major release of the year when it announced DB2

pureScale. DB2 pureScale is a database cluster solution for non-mainframe platforms, suitable for

Online Transaction Processing (OLTP) workloads. IBM based the design of DB2 pureScale on the

Parallel Sysplex implementation of DB2 data sharing on the mainframe. DB2 pureScale provides a fault-

tolerant architecture and shared-disk storage. A DB2 pureScale system can grow to 128 database

servers, and provides continuous availability and automatic load balancing.

http://en.wikipedia.org/wiki/Shared_nothing_architecture
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Z/OS
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/OLTP
http://en.wikipedia.org/wiki/Business_intelligence
http://en.wikipedia.org/wiki/Data_warehousing
http://en.wikipedia.org/wiki/Stored_procedure
http://en.wikipedia.org/wiki/Distributed_computing
http://www.ibm.com/software/data/db2/9/labchats.html#14
http://www.ibm.com/software/data/db2/9/labchats.html#31
http://www-01.ibm.com/software/data/db2/linux-unix-windows/editions-features-purescale.html
http://www-01.ibm.com/software/data/db2/linux-unix-windows/editions-features-purescale.html
http://en.wikipedia.org/wiki/IBM_Parallel_Sysplex

P a g e | 14 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

In 2009, it was announced that DB2 can be an engine in MySQL. This allows users on the System

i platform to natively access the DB2 under the IBM i operating system (formerly called OS/400), and

for users on other platforms to access these files through the MySQL interface. On the System i and its

predecessors the AS/400 and the System/38, DB2 is tightly integrated into the operating system, and

comes as part of the operating system. It provides journaling, triggers and other features.

In October 2010, IBM announced the general availability (GA) of DB2 10 for z/OS. DB2® 10 for z/OS®

expands the value delivered to businesses by IBM's industry-leading mainframe data server through

innovations in key areas:

 Improved operational efficiencies for "out-of-the-box" DB2 CPU savings

 Unsurpassed resiliency for business-critical information

 Rapid application and warehouse deployment for business growth

 Enhanced business analytics and data visualization solutions with QMF

Selected features that deliver these valuable benefits to any business include:

 When compared to running on DB2 9, depending on the workload, customers may experience

reduced CPU utilization

 When compared to running DB2 9, up to five to ten times more concurrent users on a single

subsystem by avoiding memory constraints

 Greater concurrency for data management, data definition, and data access, including DDL, BIND,

REBIND, PREPARE, utilities, and SQL

 Additional online changes for data definitions, utilities, and subsystems

 Improved security with better granularity for administrative privileges, data masking, and audit

capabilities

 Temporal or versioned data to understand system and business times at the database level (Bi-

temporal feature is not available on Oracle or any other competing RDBMS products)

 pureXML™ and SQL enhancements to simplify portability from other database solutions

 Productivity improved for database administrators, application programmers, and systems

administrators

 QMF Classic Edition, an optional for-charge feature, providing greater interoperability with other

programs plus improved queries, forms, diagnostics, performance, and resource control

http://en.wikipedia.org/wiki/MySQL

P a g e | 15 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

3. Explain various model of locking a data item. Also explain two-phases protocol.(NOV 2015)

 Lock:

 Mechanism to control concurrent access to a data item.

 Lock requests are made to concurrency-controlmanager.

 Transaction can proceed only after request is granted.Data items can be locked in two modes:

1. exclusive mode (X): Data item can be both read as well as written. X-lock is requested

using lock-X(A) instruction.

2. shared mode (S): Data item can only be read. S-lock is requested using lock- S(A)

instruction. Locks can be released:U-lock(A)

Locking protocol:

A set of rules followed by all transactions while requesting and releasing locks. Locking protocols

restrict the set of possible schedules. Ensure serializable schedules by delaying transactions that might

violate serializability.

Lock-compatibility matrix tells whether two locks are compatible or not. Any number of transactions

canhold shared locks on a data item. If any transaction holds an exclusive lock on a data item no other

transaction may hold any lock on that item.

Locking Rules/Protocol:

 A transaction may be granted a lock on an item if the requested

lock is compatible with locks already held on the item by other transactions.

 If a lock cannot be granted, the requesting transaction is made to

wait till all incompatible locks held by other transactions have been released. The lock is then granted.

Pitfalls of Lock-Based Protocols:

 Too early unlocking can lead to non-serializable schedules.Too late unlocking can lead to

deadlocks.

Example

Transaction T1 transfers $50 from account B to account A.Transaction T2 displays the total amount of

money in accounts A and B, that is, the sum of A + B.

Early unlocking can cause incorrect results, non-serializable schedules.if A and B get updated in-

between the read of A and B, the displayed sum would be wrong.

 e.g., A = $100, B = $200, display A + B shows $250

1. X-lock(B)

2. read B

3. B := B-50

P a g e | 16 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

4. write B

5. U-lock(B)

6. S-lock(A)

7. read A

8. U-lock(A)

9. S-lock(B)

10. read B

11. U-lock(B)

12. display A + B

13. X-lock(A)

14. read A

15. A := A+50

16. write A

17. U-lock(A)

T1 T2

Late unlocking causes deadlocks.Neither T1 nor T2 can make progress: executing lock-S(B) causes T2 to

wait for T1 to release its lock on B. executing lock-X(A) causes T1 to wait for T2 to release its lock on

A.To handle a deadlock

one of T1 or T2 must be rolled back and its locks released.

1. X-lock(B)

2. read(B)

3. B := B-50

4. write(B)

5. S-lock(A)

6. read(A)

7. S-lock(B)

8. X-lock(A)

T1 T2

Two-Phase Locking Protocol:

 A locking protocol that ensures conflict-serializable schedules. It works in two phases:

o Phase 1: Growing Phase: transaction may obtain locks transaction may not release locks

o Phase 2: Shrinking Phase: transaction may release locks transaction may not obtain locks

 When the first lock is released, the transaction moves from phase 1 to phase 2.

P a g e | 17 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

 Properties of the Two-Phase Locking Protocol. Ensures serializability It can be shown that the

transactions can be serialized in the order of their lock points (i.e. the point where a transaction

acquired its final lock).

 Does not ensure freedom from deadlocks. Cascading roll-back is possible. Modifications of the

two-phase locking protocol

Strict two-phase locking

 * A transaction must hold all its exclusive locks till it commits/aborts

 * Avoids cascading roll-back

Rigorous two-phase locking

 All locks are held till commit/abort. Transactions can be serialized in the order in which they

commit.

 Refine the two-phase locking protocol with lock conversions

Phase 1:Acquire a lock-S on item can acquire a lock-X on item can convert a lock-S to a lock-X

(upgrade)

Phase 2: can release a lock-S,can release a lock-X,can convert a lock-X to a lock-S (downgrade)

* Ensures serializability; but still relies on the programmer to insert the various locking instructions.

*Strict and rigorous two-phase locking (with lock conversions) are used extensively in DBMS.

Automatic Acquisition of Locks:

 A transaction Ti issues the standard read/write instruction without explicit locking calls (by the

programmer).

 The operation read(D) is processed as:

 if Ti has a lock on D then

 read(D)

 else

 if necessary wait until no other transaction has a lock-X on D;

 grant Ti a lock-S on D;

 read(D);

 end

 write(D) is processed as:

 if Ti has a lock-X on D then

 write(D)

 else

 if necessary wait until no other transaction has any lock on D;

P a g e | 18 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

 if Ti has a lock-S on D then

 upgrade lock on D to lock-X

 else

 grant Ti a lock-X on D;

 end

 write(D);

 end

All locks are released after commit or abort

Implementation of Locking:

 A lock manager can be implemented as a separate process to which transactions send lock and

unlock requests.

 The lock manager replies to a lock request by sending a lock grant message (or a message

asking the transaction to roll back, in case of a deadlock).

 The requesting transaction waits until its request is answered.

 The lock manager maintains a data structure called a lock table to record granted locks and

pending requests.

Lock table:

 Implemented as in-memory hash table indexed on the data item being locked. Black rectangles

indicate granted locks.

 White rectangles indicate waiting requests. Records also the type of lock granted/requested.

 Processing of requests:

 New request is added to the end of the queue of requests for the data item, and granted if

it is compatible with all earlier locks.

 Unlock requests result in the request being deleted, and later requests are checked to see

if they can now be granted.

 If transaction aborts, all waiting or grantedrequests of the transaction are deleted. Index

on transaction to implement this efficiently.

4. Explain deadlock handling in detail (Nov 2012)

In order to understand deadlock, let us consider the following example:

P a g e | 19 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

As shown in partial schedule transaction T1 is waiting for transaction T2 to release its lock on data item

B and transaction T2 is waiting for transaction T I to release its lock on data item A. Such a cycle of

transactions waiting for locks to be released is called a Deadlock.

Clearly, these two transactions will make no further progress. Now we can define the deadlock as

"A system is in a deadlock state if there exists a set of transactions such that every transaction in the set

is waiting for another transaction in the set."

More precisely, there exists a set of waiting transactions (T0,TI, Tn) such that TO is waiting for a data

item that is held by T I and T I is waiting for a data item that is held by T2 and

....... Tn-l is waiting for a data item that is held by Tn and Tn is waiting for a dCltaitem that is held by TO.

None of the transactions can make progress in such a situation.

There are two principal methods for dealing with the deadlock problem.

 Deadlock prevention

 Deadlock detection

Deadlock prevention: We can use a deadlock-prevention protocol to ensure that the system will never

enter a deadlock state.

Deadlock detection: In this case, we can allow the system to enter a deadlock state, and then try to

recover using a deadlock detection and deadlock recovery scheme.

Both the above methods may result in transaction rollback. Prevention is commonly used if the

probability that the system would enter a deadlock state is relatively high; otherwise detection and

recovery are more efficient.

Deadlock Prevention

We can prevent deadlocks by giving each transaction a priority and ensuring that lower priority

transactions are not allowed to wait for higher priority transactions (or vice versa). One way to assign

priorities is to give each transaction a timestamp when it starts up. The lower the timestamp, the higher

the transaction priority that is, the oldest transaction has the highest priority.

If a transaction Ti requests a lock and transaction Tj holds a conflicting lock, the lock manager can use

one of the following two policies:

Wait-die

http://ecomputernotes.com/images/handling%20of%20DeadLocks.jpg
http://ecomputernotes.com/computernetworkingnotes/computer-network/protocol

P a g e | 20 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

If Ti has higher priority, it is allowed to wait; otherwise it is aborted. It means when transaction Ti

requests a data item currently held by Tj, Ti is allowed to wait only if it has a timestamp smaller than

that of T1 (that is Ti is older than Tj). Otherwise Ti is rolled back (dies).

 Example

Suppose that transactions T22, T23 and T24 have timestamps 5, 10 and 15 respectively. If T22 requests

a data item held by T23 then T22 will wait. If T24 requests a data item held by T23 then T24 will be

rolled back.

 T22 will Wait T24 will rollback

T22 ----------------------> T23 <---------------------- T24

(5) (10) (15)

 The wait-die scheme is non-preemptive scheme because only a transaction requesting a lock can be

aborted. As a transaction grows older (and its priority increases), it tends to wait for more and more

younger transactions.

Wound-wait

If Ti has higher priority, abort Tj otherwise Ti waits. It means when transaction Ti requests a data item

currently held by Tj, Ti is allowed to wait only if it has a timestamp larger than that of Tj (that is Ti is

younger than Tj). Otherwise Tj is rolled back (Tj is wounded by Ti).

Example:

Returning to our previous example, with transactions T22,T23 and T24, ifT22 requests a data item held

by T23 then the data item will be preempted from T23 and T23 will be rolled back. IfT24 requests a

data item held by T23, and then T24 will wait.

 T22 access T23 will be

 Data item rollback

 T22 --------------------> T23

 (5) (10)

Data item with T23 wait for T23

 T23 <------------------ T24

(10) (15)

This scheme is based on a preemptive technique and is a counterpart to the wait-die scheme. In the

wait-die scheme, lower priority transactions can never wait for higher priority transactions. In the

wound-wait scheme, higher priority transactions never wait for lower priority transactions. In either

case no deadlock cycle can develop.

P a g e | 21 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

When a transaction is aborted and restarted, it should be given the same timestamp that it had

originally. Reissuing timestamps in this way ensures that each transaction will eventually become the

oldest transaction, and thus the one with the highest priority, and will get the locks that it requires.

Problem of starvation

Whenever transactions are rolled back, it is important to ensure that there is no starvation that is, no

transaction gets rolled back repeatedly and is never allowed to make progress.

Both the wound-wait and the wait-die schemes avoid starvation. At any time, there is a transaction with

the smallest timestamp. This transaction cannot be required to roll back in either scheme. Since

timestamps always increase, and since transactions are not assigned new timestamps when they are

rolled back, a transaction that is rolled back will eventually have the smallest timestamp. Thus it will

not be rolled back again.

Differences between wait-die and wound-wait scheme

There are following differences between wait-die and wound-wait schemes:

 In the wait-die scheme an older transaction must wait for a younger one to release its data item.

Thus, the older the transaction gets the more it tends to wait. By contrast, in the wound wait scheme,

an older transaction never waits for a younger transaction.

 In the wait-die scheme, if a transaction T24 request a data item held a data item by T23 and T24

then die and roll back because Ti request a data held by Tj and TS(Ti» TS(Tj). Now T24 restarted and

may reissue the same sequence of requests if data item is still held by T23 then T24 will die again.

Thus T24 may die several times before acquiring the needed data item.

Now see what happen in case of wound-wait scheme transaction Ti is wound and rollback because Tj

request a data item that it holds and TS(Ti>TS(Tj). Now suppose that data item is held by T23 and T22

request the data item held by T23. Then T23 is wound and rollback because TS (23>TS (T22). When

T23 will again restarted and request the data item T22 then again, TS (23>TS (22) and T23 will wait for

transaction T22 and T23 will not rollback again. Thus, there may be few rollbacks in the wound wait

scheme.

Timeout-Based Schemes

Another simple approach to deadlock handling is based on lock timeouts. In this approach, a

transaction that has requested a lock waits for at most a specified amount of time. If the lock has not

been granted within that time, the transaction is said to time out, and it rolls itself back and restarts. If

there was in fact a deadlock, one or more transactions involved in the deadlock will time out and roll

back, allowing the others to proceed. This scheme falls somewhere between deadlock prevention,

where a deadlock will never occur and deadlock detection and recovery.

P a g e | 22 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

Uses of Timeout-Based Schemes

The timeout scheme is particularly easy to implement, and works well if transactions· are short, and if

long waits are likely to be due to deadlocks.

 Limitations

• It is hard to decide how long a transaction must wait before timing out. Too long a wait results in

unnecessary delays once a deadlock has occurred. Too short a wait results in transaction rollback even

when there is no deadlock, leading to wasted resources.

• Starvation is also a possibility with this scheme.

Hence the timeout-based scheme has limited applicability.

5. Discuss in detail about Time stamp - based protocols

TIMESTAMP BASED PROTOCOL:

 Timestamp based protocol is the locking protocols and the order between every pair of

conflicting transactions at execution time by the first that both members of the pairs

request that involves incompatible modes.

 Another method for determining the serializability order is to select an ordering among

transaction in advance.The most common method for doing so is to use a timestamp

ordering scheme.

TIMESTAMPS:

 This timestamp is assigned by the database system before the transaction Ti starts

execution .

 If a transaction Ti has been assigned timestampTS(Ti)and a new transaction Tj

enters the system,thenTS(Ti)<TS(Tj).There are two simple method for implementing

this scheme.

1. Use the value of the system clock as the timestamp,(i.e) a transactions timestamp

is equal to the value of the clock when the transaction enters the system.

2. Use a logical counter that is incremented after a new timestamp

 has been assigned and a transaction timestamp is equal to the value of the counter

when the transaction enter the system.

 To implement this scheme we associate with each data item Q two timestamp values.

 W-timestamp(Q) denotes the largest timestamp of any transaction that executed

write(Q) successfully.

P a g e | 23 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

 R-timestamp(Q) denotes the largest timestamp of any transaction that executed read(Q)

successfully.

THE TIMESTAMP-ORDERING PROTOCOL:

The timestamp-ordering protocol ensures that any conflicting read and write operations are

executed in timestamp order.This protocols operates as follows:

1.Suppose that transaction Ti issues read(Q).

 If TS(Ti)<W-timestamp(Q), then Ti needs to read a value of Q that was already

overwritten.hence the read operation is rejected and Ti is rolled back.

 If TS(Ti)=>W-timestamp(Q) then the read operation is executed and R-timestamp(Q) is

set to the maximum of R-timestamp(Q) and TS(Ti).

2. Suppose that transaction Ti issues write(Q).

 If Ts(Ti)<R-timestamp(Q) the the value of Q thatTi is producing was needed

previously and the system assumed that the value would never be produced.

 If TS(Ti)<W-timestamp(Q), then Ti is attempting to write an obsolete value of Q.hence

the system rejects this write operation and rolls Ti back.

 Otherwise the system executes the write operation and sets W-timestamp(Q)to

TS(Ti).

The protocol can generate schedules that are not recoverable.However it can be

extended to make the schedules recoverable in one several ways

 Recoverability and cascadelesssness can be ensured by performing all writes together at

the end of the transaction.

 Recoverability and cascadelessness can also be guaranteed by using a limited form of

locking whereby reads of uncommitted items are postponed until the transaction the

updated the item commits.

 Recoverability alone can be ensured by tracking uncommitted writes and allowing a

transaction Ti to commit only after the commit of any transaction that wrote a value that

Ti read.

Example: The following schedule is possible under the timestamp ordering protocol.Since

TS(T14) < TS(T15), the schedule must be conflict equivalent to schedule <T14,T15>

P a g e | 24 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

read(B)

read(B)

B := B – 50

write(B)

read(A)

read(A)

display(A+B)

A := A + 50

write(A)

display(A+B)

T14 T15

Thomas’ Write rule:

 Let us consider schedule 4 and apply the timestamp ordering protocol.Since T16 starts

before T17 we shall assume that TS(T16)<TS(T17).

 The read(Q) operation of T16 succeeds as does the write (Q) operation,we find that

TS(T16)<W-timestamp(Q),since W-timestamp(Q)=TS(T17).

 Thus the write (Q) by T16 is rejected and transaction T16 must be rolled back.

 Although the rollback of T16 is required by the timestamp ordering protocol it is

unnecessary.Since T17 has already written Q,the value that T16 is attempting to write

is one that will never need to be read.

 Any transaction Ti with TS(Ti)<TS(T17) that attempts a read(Q) will be rolled

back.Since TS(Ti)<W-timestamp(Q).

The modification to the timestamp-ordering protocol called Thomas write rule is

this.Suppose that transaction Ti issues write(Q).

1. If TS(Ti)<R-timestamp(Q),then the value of Q that Ti is producing was previously

needed and it had been assumed that the value would never be produced.Hence the

system rejects the write operation and rolls Ti back.

2. If TS(Ti)<W-timestamp(Q) then Ti is attempting to write an obsolute value of Q.Hence

the write operation can be ignored.

3. Otherwise the system executes the write operation and sets

 W-timestamp(Q) to TS(Ti).

P a g e | 25 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

Under Thomas’ write rule the write(Q) operation of T16 would be ignored.The result

is a schedule that is view equivalent to the serial schedule<T16,T17>.

6. Discuss various type of failures that occur in a system.

Failure Classification

 Various types of failure that may occur in a system

1. Transaction failure

a. Logical errors - The Transaction cannot complete due to some internal error condition

b. System errors

The database system must terminate an active transaction due to an error condition. (e.g.,

deadlock)

2. System crash:

 A power failure or other hardware or software failure causes the system to crash.

Fail stop assumption

 A non-volatile storage contents are assumed to not be corrupted by system crash. Database systems

have numerous integrity checks to prevent corruption of disk data

3. Disk failure

 A head crash or similar disk failure destroys all or part of Disk. Destruction is assumed to be

detectable: disk drives use checksums to detect failures

7.Discuss about recovery and Atomicity (or)

Discuss about the Recovery System for Database Management Systems.

 (NOV 2014)

Recovery system

 Recovering a system from failure crash is called recovery system or crash recovery.

Failure Classification:

 Various types of failure that may occur in a system

1. Transaction failure

P a g e | 26 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

A. Logical errors - The Transaction cannot complete due to some internal error condition

B.System errors-The database system must terminate an active transaction due to an error

condition. (e.g., deadlock)

2. System crash:

 A power failure or other hardware or software failure causes the system to crash.

Fail stop assumption

A non-volatile storage contents are assumed to not be corrupted by system crash. Database

systems have numerous integrity checks to prevent corruption of disk data

3. Disk failure

A head crash or similar disk failure destroys all or part of Disk. Destruction is assumed to

be detectable: disk drives use checksums to detect failures

4. Recovery Algorithms

Recovery algorithms are techniques to ensure database consistency and transaction

atomicity and durability despite failures.

Recovery algorithms have two parts

6. Actions taken during normal transaction processing to ensure enough information exists to

recover from failures

7. Actions taken after a failure to recover the database contents to a state that ensures

atomicity, consistency and durability.

Storage Structure :

 The various data items in the database may be stored and accessed in a number of different

storage media.

Storage types:

 The types are:

 Volatile: It does not survive system crashes.

eg: main memory, cache memory

 Non volatile storage: It survives system crashes

eg: disk, tape, flash memory, non-volatile (battery backed

 up) RAM.

 Stable storage: A mythical form of storage that survives all failures approximated by

maintaining multiple copies on distinct nonvolatile media.

P a g e | 27 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

Stable Storage Implementation

 Maintain multiple copies of each block on separate disks

o copies can be at remote sites to protect against disasters such as fire or flooding.

 Failure during data transfer can still result in inconsistent copies: Block transfer can result

in

 Successful completion

 Information arrived safely at its destination

 Partial failure

 Destination block has incorrect information

 Total failure:

Destination block was never updated .

 Protecting storage media from failure during data transfer (one solution)

o Execute output operation as follows (assuming two copies of each block)

1. Write the information onto the first physical block.

2. When the first write successfully completes, write the Same information onto the

second physical block.

3. The output is completed only after the second write successfully completes.

 copies of a block may differ due to failure during output operation. To recover from failure:

First find inconsistent blocks:

 1. Expensive solution: Compare the two copies of every disk block.

 2. Better solution: Record in-progress disk writes on non- volatile storage (Nonvolatile RAM

or special area of disk).

 Use this information during recovery to find blocks that may be inconsistent, and

only compare copies of these.

 Used in hardware RAID systems If either copy of an inconsistent block is detected to

have an error (bad checksum), overwrite it by the other copy. If both have no error,

but are different, overwrite the second block by the first block.

Data Access

 Physical blocks are those blocks residing on the disk.

P a g e | 28 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

 Buffer blocks are the blocks residing temporarily in main memory.

 Block movements between disk and main memory are initiated through the following two

operations:

 input(B) transfers the physical block B to main memory.

 output(B) transfers the buffer block B to the disk, and replaces the appropriate

physical block there.

 Each transaction Ti has its private work-area in which local copies of all data

items accessed and updated by it are kept.

 Ti's local copy of a data item X is called xi.

We assume, for simplicity, that each data item fits in, and is stored inside, a single block.

 Transaction transfers data items between system buffer

 blocks and its private work-area using the following operations :

 read(X) assigns the value of data item X to the local variable xi.

 write(X) assigns the value of local variable xi to data item {X} in the buffer block.

 Both these commands may necessitate the issue of an input(BX) instruction before

the assignment, if the block BX in which X resides is not already in memory.

Transactions:

 Perform read(X) while accessing X for the first time;

 All subsequent accesses are to the local copy.After last access, transaction executes

write(X).

P a g e | 29 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

 output(BX) need not immediately follow write(X). System

can perform the output operation when it deems fit.

Recovery and Atomicity

 Modifying the database without ensuring that the transaction will commit may leave

the database in an inconsistent state.

 Consider transaction Ti that transfers $50 from account A to account B;goal is

either to perform all database modifications made by Ti or none at all.

 Several output operations may be required for Ti (to output A and B). A failure may

occur after one of these modifications have been made but before all of them are

made.

To ensure atomicity despite failures, we first output information describing the

modifications to stable storage without modifying the database itself.

Two approaches:

 1. log based recovery

 2. Shadow paging

Assume that a transaction run serially, that is, one after the other.

Log Based Recovery

 A log is kept on stable storage.

 The log is a sequence of log records, and maintains a record of update activities on the

database.

 When transaction Ti starts, it registers itself by writing a<Ti

P a g e | 30 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

start>log record

 Before Ti executes write(X), a log record <Ti, X, V1, V2>is written,

 where V1 is the value of X before the write, and V2 is the value to be written to x.

 Log record notes that Ti has performed a write on data item

Xj Xj had value V1 before the write, and will have value V2 after the write.

 When Ti finishes it last statement, the log record <Ti

commit> is written to .x

We assume for now that log records are written directly to stable storage (that is, they are not

buffered)

 Two approaches using logs

 Deferred database modification

 Immediate database modification

Deferred Database Modification

 The deferred database modification scheme records all modifications to the log, but

defers all the writes to after partial commit.

 Assume that transactions execute serially

 Transaction starts by writing <Ti start>record to log.

 A write(X) operation results in a log record <Ti, X, V>being

 written, where V is the new value for X.

 Note: old value is not needed for this scheme.

 The write is not performed on X at this time, but is deferred. When Ti partially

commits, <Ti commit> is written to the log .

 Finally, the log records are read and used to actually execute the previously

deferred writes.

 During recovery after a crash, a transaction needs to be redone if and only if both

<Ti start> and<Ti commit> are there in the log.

 Redoing a transaction Ti (redoTi) sets the value of all data items updated by the

transaction to the new values.

 Crashes can occur while the transaction is executing the original updates, or

while recovery action is being taken

example: transactions T0 and T1 (T0 executes before T1):

P a g e | 31 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

 T0 : read (A)

 T1 : read (C)

 A: - A - 50 C:- C- 100

 Write (A) write (C)

 read (B)

 B:- B + 50

 write (B)

Below we show the log as it appears at three instances of time.

 If log on stable storage at time of crash is as in case:

 (a) No redo actions need to be taken

 (b) redo(T0) must be performed since <T0 commit> is present

 (c) redo(T0) must be performed followed by redo(T1) since

<T0 commit> and <Ti commit> are present

Immediate Database Modification

 The immediate database modification scheme allows database updates of an

uncommitted transaction to be made as the writes are issued.

 since undoing may be needed, update logs must have both old value and new

value

 Update log record must be written before database item is written.

 We assume that the log record is output directly to stable storage

 Can be extended to postpone log record output, so long as prior to execution of

an output(B) operation for a data block B, all log records corresponding to

items B must be flushed to stable storage.

P a g e | 32 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

 Output of updated blocks can take place at any time before or after transaction

commit.

 Order in which blocks are output can be different from the order in which

they are written.

Example :

 Log input output

Log Write Output

<T0 start>

<T0, A, 1000, 950>

To, B, 2000, 2050

 A = 950

 B = 2050

<T0 commit>

<T1 start>

<T1, C, 700, 600>

 C = 600

 BB, BC

<T1 commit>

 BA

 Note: BX denotes block containing X.

x1

Recovery procedure has two operations instead of one:

 undo(Ti) restores the value of all data items updated by Ti

 to their old values, going backwards from the last log record for Ti

 redo(Ti) sets the value of all data items updated by Ti to the

 new values, going forward from the first log record for Ti.

 Both operations must be idempotent That is, even if the operation is executed

multiple times the effect is the same as if it is executed once

 Needed since operations may get re-executed during recovery

 When recovering after failure:

P a g e | 33 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

 Transaction Ti needs to be undone if the log contains the record

 <Ti start>, but does not contain the record <Ti commit>.

 Transaction Ti needs to be redone if the log contains both the record

 <Ti start> and the record <Ti commit>.

8.Discuss about Database Recovery procedure in detail. (April 2015)(NOV 2015)

Recovery system

 Recovering a system from failure crash is called recovery system or crash recovery.

Failure Classification: (6 Marks)

 Various types of failure that may occur in a system

1. Transaction failure

A. Logical errors - The Transaction cannot complete due to some internal error condition

B. System errors-The database system must terminate an active transaction due to an error

condition. (e.g., deadlock)

2. System crash:

 A power failure or other hardware or software failure causes the system to crash.

Fail stop assumption

A non-volatile storage contents are assumed to not be corrupted by system crash. Database

systems have numerous integrity checks to prevent corruption of disk data

3. Disk failure

A head crash or similar disk failure destroys all or part of Disk. Destruction is assumed to

be detectable: disk drives use checksums to detect failures

4. Recovery Algorithms

Recovery algorithms are techniques to ensure database consistency and transaction

atomicity and durability despite failures.

Recovery algorithms have two parts

5. Actions taken during normal transaction processing to ensure enough information exists to

recover from failures

6. Actions taken after a failure to recover the database contents to a state that ensures

atomicity, consistency and durability.

(5Marks)

8. Write about Microsoft SQL server in detail

P a g e | 34 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

Microsoft SQL Server is a relational database management system developed by Microsoft. As a

database, it is a software product whose primary function is to store and retrieve data as requested by

other software applications, be it those on the same computer or those running on another computer

across a network (including the Internet). There are at least a dozen different editions of Microsoft SQL

Server aimed at different audiences and for workloads ranging from small single-machine applications

to large Internet-facing applications with many concurrent users. Its primary query languages are T-

SQL and ANSI SQL.

9. Explain Multidimensional Clustering in IBM.

Multidimensional clustering tables

 Multidimensional clustering (MDC) provides an elegant method for clustering data in tables along

multiple dimensions in a flexible, continuous, and automatic way. MDC can significantly improve query

performance, in addition to significantly reducing the overhead of data maintenance operations, such

as reorganization, and index maintenance operations during insert, update, and delete operations. MDC

is primarily intended for data warehousing and large database environments, and it can also be used in

online transaction processing (OLTP) environments.

Comparison of regular and MDC tables

Regular tables have indexes that are record-based. Any clustering of the indexes is restricted to a single

dimension. Prior to Version 8, DB2(R) Universal Database (DB2 UDB) supported only single-dimensional

clustering of data, through clustering indexes. Using a clustering index, DB2 UDB attempts to maintain

the physical order of data on pages in the key order of the index when records are inserted and

updated in the table. Clustering indexes greatly improve the performance of range queries that have

predicates containing the key (or keys) of the clustering index. Performance is improved with a good

clustering index because only a portion of the table needs to be accessed, and more efficient

prefetching can be performed.

Data clustering using a clustering index has some drawbacks, however. First, because space is filled up

on data pages over time, clustering is not guaranteed. An insert operation will attempt to add a record

to a page nearby to those having the same or similar clustering key values, but if no space can be found

in the ideal location, it will be inserted elsewhere in the table. Therefore, periodic table reorganizations

may be necessary to re-cluster the table and to setup pages with additional free space to accommodate

future clustered insert requests.

http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Query_language
http://en.wikipedia.org/wiki/Transact-SQL
http://en.wikipedia.org/wiki/Transact-SQL
http://en.wikipedia.org/wiki/SQL

P a g e | 35 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

Second, only one index can be designated as the "clustering" index, and all other indexes will be

unclustered, because the data can only be physically clustered along one dimension. This limitation is

related to the fact that the clustering index is record-based, as all indexes have been prior to Version

8.1.

Third, because record-based indexes contain a pointer for every single record in the table, they can be

very large in size.

Figure 26. A regular table with a clustering index

The table in Figure 26 has two record-based indexes defined on it:

 A clustering index on "Region"

 Another index on "Year"

The "Region" index is a clustering index which means that as keys are scanned in the index, the

corresponding records should be found for the most part on the same or neighboring pages in the table.

In contrast, the "Year" index is unclustered which means that as keys are scanned in that index, the

corresponding records will likely be found on random pages throughout the table. Scans on the

clustering index will exhibit better I/O performance and will benefit more from sequential prefetching,

the more clustered the data is to that index.

http://publib.boulder.ibm.com/infocenter/db2luw/v8/topic/com.ibm.db2.udb.doc/admin/c0007201.htm#mdca01a

P a g e | 36 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

MDC introduces indexes that are block-based. "Block indexes" point to blocks or groups of

records instead of to individual records. By physically organizing data in an MDC table into blocks

according to clustering values, and then accessing these blocks using block indexes, MDC is able not

only to address all of the drawbacks of clustering indexes, but to provide significant additional

performance benefits.

First, MDC enables a table to be physically clustered on more than one key, or dimension,

simultaneously. With MDC, the benefits of single-dimensional clustering are therefore extended to

multiple dimensions, or clustering keys. Query performance is improved where there is clustering of

one or more specified dimensions of a table. Not only will these queries access only those pages having

records with the correct dimension values, these qualifying pages will be grouped into blocks, or

extents.

Second, although a table with a clustering index can become unclustered over time, an MDC table

is able to maintain and guarantee its clustering over all dimensions automatically and continuously.

This eliminates the need to reorganize MDC tables to restore the physical order of the data.

Third, in MDC the clustering indexes are block-based. These indexes are drastically smaller than

regular record-based indexes, so take up much less disk space and are faster to scan.

Figure 27. A multidimensional clustering table

P a g e | 37 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

Block indexes

The physically organized such that records having the same "Region" and "Year" values are

grouped together into separate blocks, or extents. An extent is a set of contiguous pages on disk, so

these groups of records are clustered on physically contiguous data pages. Each table page belongs to

exactly one block, and all blocks are of equal size (that is, an equal number of pages). The size of a block

is equal to the extent size of the table space, so that block boundaries line up with extent boundaries. In

this case, two block indexes are created, one for the "Region" dimension, and another for the "Year"

dimension. These block indexes contain pointers only to the blocks in the table. A scan of the "Region"

block index for all records having "Region" equal to "East" will find two blocks that qualify. All records,

and only those records, having "Region" equal to "East" will be found in these two blocks, and will be

clustered on those two sets of contiguous pages or extents. At the same time, and completely

independently, a scan of the "Year" index for records between 1999 and 2000 will find three blocks

that qualify. A data scan of each of these three blocks will return all records and only those records that

are between 1999 and 2000, and will find these records clustered on the sequential pages within each

of the blocks.

In addition to these clustering improvements, MDC tables provide the following benefits:

 Probes and scans of block indexes are much faster due to their incredibly small size in relation to

record-based indexes

 Block indexes and the corresponding organization of data allows for fine-grained "partition

elimination", or selective table access

 Queries that utilize the block indexes benefit from the reduced index size, optimized prefetching

of blocks, and guaranteed clustering of the corresponding data

 Reduced locking and predicate evaluation is possible for some queries

 Block indexes have much less overhead associated with them for logging and maintenance

because they only need to be updated when adding the first record to a block, or removing the

last record from a block

 Data rolled in can reuse the contiguous space left by data previously rolled out.

P a g e | 38 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

10. Explain the various background process of Oracle in detail. (April 2015)

Oracle works is fundamental to tuning SQL statements. This provides an overview of important

concepts in Oracle architecture and how they can impact SQL performance tuning. All users have to

connect or login to Oracle. The listener is waiting on a predetermined port and ‘listens’ for traffic from

the network. When a request is made to login, the listener process verifies the login credentials and if

they pass, a dedicated user process (or if MTS…is assigned to the pool of available shared user

processes) is started and a Program Global Area (PGA) is established. This PGA contains an area for any

sorts the user will request as well as a cursor area for each SQL submitted. This cursor area is where the

rows/result set from Oracle will be held while negotiating with the application on how to return the

rows/result set.

The SQL is then passed to the library cache. Oracle performs a check sum on the SQL and arrives at a

hash value from this check sum. This hash value is used to access a predetermined location in the

P a g e | 39 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

library cache. Oracle checks to see if the SQL in that slot (if there is SQL in the slot) matches the SQL

being submitted.

If it is a match, then the existing explain plan is used. This is known as a ‘Soft Parse.’

11. With a neat diagram discuss about architecture of MySQL in detail. (April 2015)

MySQL Server is a relational database management system developed by Microsoft. As a

database, it is a software product whose primary function is to store and retrieve data as requested by

other software applications, be it those on the same computer or those running on another computer

across a network (including the Internet). There are at least a dozen different editions of Microsoft SQL

Server aimed at different audiences and for workloads ranging from small single-machine applications

to large Internet-facing applications with many concurrent users. Its primary query languages are T-

SQL and ANSI SQL.

Architecture (6 Marks)

The protocol layer implements the external interface to SQL Server. All operations that can be invoked

on SQL Server are communicated to it via a Microsoft-defined format, called Tabular Data Stream (TDS).

TDS is an application layer protocol, used to transfer data between a database server and a client.

Initially designed and developed by Sybase Inc. for their Sybase SQL Server relational database engine

in 1984, and later by Microsoft in Microsoft SQL Server, TDS packets can be encased in other physical

transport dependent protocols, including TCP/IP, Named pipes, and Shared memory. Consequently,

http://en.wikipedia.org/wiki/Relational_database_management_system
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Query_language
http://en.wikipedia.org/wiki/Transact-SQL
http://en.wikipedia.org/wiki/Transact-SQL
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Tabular_Data_Stream
http://en.wikipedia.org/wiki/Sybase_SQL_Server
http://en.wikipedia.org/wiki/TCP/IP
http://en.wikipedia.org/wiki/Named_pipe
http://en.wikipedia.org/wiki/Shared_memory

P a g e | 40 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

access to SQL Server is available over these protocols. In addition, the SQL Server API is also exposed

over web services.

12. Explain typically available storages media in detail (Apr 2011)

Classification of Physical Storage Media

 Speed with which data can be accessed

 Cost per unit of data

 Reliability

o data loss on power failure or system crash

o physical failure of the storage device

 Can differentiate storage into:

o volatile storage: loses contents when power is switched off

Nonvolatile storage:

Contents persist even when power is switched off.

Includes secondary and tertiary storage, as well as

Battery backed up main memory

Physical Storage Media

Cache

Fastest and most costly form of storage; volatile; managed by the computer system

hardware

(Note: “Cache” is pronounced as “cash”)

Main memory

 Fast access (10s to 100s of nanoseconds; 1 nanosecond =

10–9 seconds)

 Generally too small (or too expensive) to store the entire database

Capacities of up to a few Gigabytes widely used currently

Capacities have gone up and per byte costs have decreased steadily and rapidly

(roughly factor of 2 every 2 to 3 years)

 Volatile — contents of main memory are usually lost if a power

Failure or system crash occurs.

Flash memory

http://en.wikipedia.org/wiki/Web_service

P a g e | 41 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

 Data survives power failure

 Data can be written at a location only once, but location can be erased and written to

again

 Can support only a limited number (10K – 1M) of write/erase cycles.

 Erasing of memory has to be done to an entire bank of memory

 Reads are roughly as fast as main memory

 But writes are slow (few microseconds), erase is slower

 NOR Flash

 Fast reads, very slow erase, lower capacity

 Used to store program code in many embedded devices

 NAND Flash

 Page-at-a-time read/write, multi-page erase

 High capacity (several GB)

 Widely used as data storage mechanism in portable devices

Magnetic-disk

 Data is stored on spinning disk, and read/written magnetically

 Primary medium for the long-term storage of data; typically stores entire database.

 Data must be moved from disk to main memory for access, and written back for storage

 direct-access – possible to read data on disk in any order, unlike magnetic tape

 Survives power failures and system crashes

 disk failure can destroy data: is rare but does happen

Optical storage

 non-volatile, data is read optically from a spinning disk using a laser

 CD-ROM (640 MB) and DVD (4.7 to 17 GB) most popular forms

 Write-one, read-many (WORM) optical disks used for archival storage (CD-R, DVD-

R, DVD+R)

 Multiple write versions also available (CD-RW, DVD-RW, DVD+RW, and DVD-RAM)

 Reads and writes are slower than with magnetic disk

P a g e | 42 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

 Juke-box systems, with large numbers of removable disks, a few drives, and a

mechanism for automatic loading/unloading of disks available for storing

large volumes of data

Tape storage

o non-volatile, used primarily for backup (to recover from disk failure), and for

archival data

o sequential-access – much slower than disk

o very high capacity (40 to 300 GB tapes available)

o tape can be removed from drive storage costs much cheaper than disk, but

drives are expensive

o Tape jukeboxes available for storing massive amounts of data

 hundreds of terabytes (1 terabyte = 109 bytes) to even a petabyte (1

petabyte = 1012 bytes)

Storage Hierarchy

 primary storage: Fastest media but volatile (cache, main memory).

 secondary storage: next level in hierarchy, non-volatile, moderately fast access time

P a g e | 43 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

 also called on-line storage

 E.g. flash memory, magnetic disks

 tertiary storage: lowest level in hierarchy, non-volatile, slow access time

 also called off-line storage

 E.g. magnetic tape, optical storage

Magnetic Disk

 Read-write head

 Positioned very close to the platter surface (almost touching it)

 Reads or writes magnetically encoded information.

 Surface of platter divided into circular tracks

 Over 50K-100K tracks per platter on typical hard disks

 Each track is divided into sectors.

 Sector size typically 512 bytes

 Typical sectors per track: 500 (on inner tracks) to 1000 (on outer tracks)

 To read/write a sector

 disk arm swings to position head on right track

 platter spins continually; data is read/written as sector passes under head

P a g e | 44 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

 Head-disk assemblies

 multiple disk platters on a single spindle (1 to 5 usually)

 One head per platter, mounted on a common arm.

 Cylinder consists of ith track of all the platters

 Earlier generation disks were susceptible to “head-crashes” leading to loss of all data on

disk

 Current generation disks are less susceptible to such disastrous failures, but

individual sectors may get corrupted

Disk controller – interfaces between the computer system and the disk drive hardware.

o accepts high-level commands to read or write a sector

o initiates actions such as moving the disk arm to the right track and actually

reading or writing the data

o Computes and attaches checksums to each sector to verify that data is read back

correctly

 If data is corrupted, with very high probability stored checksum won’t

match recomputed checksum

o Ensures successful writing by reading back sector after writing it

o Performs remapping of bad sectors

Disk Subsystem

P a g e | 45 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

13. Explain storage access in detail (APR 2010)

Storage Access

 A database file is partitioned into fixed length storage units called blocks. Blocks are units

of both storage allocation and data transfer.

 Database system seeks to minimize the number of block transfers between the disk and

memory. We can reduce the number of disk accesses by keeping as many blocks as possible in

main memory.

Buffer – portion of main memory available to store copies of disk blocks.

Buffer manager – subsystem responsible for allocating buffer space in main memory.

Buffer Manager

 Programs call on the buffer manager when they need a block from disk. Buffer manager does

the following:

 If the block is already in the buffer, return the address of the block in main memory

1. . If the block is not in the buffer

 . Allocate space in the buffer for the block

 . Replacing (throwing out) some other block, if required, to make space

for the new block.

 Replaced block written back to disk only if it was modified since the most recent time

that it was written to/fetched from the disk.

 Read the block from the disk to the buffer, and return the

 address of the block in main memory to requester.

P a g e | 46 DATABASE MANAGEMENT SYSTEMS DEPARTMENT OF CSE

UNIVERSITY QUESTIONS

1. Explain deadlock handling in detail (Nov 2012)(Question No. 8)

2. Explain about Microsoft SQL server in detail (April 2012) (Nov 2014) (Question No. 5)

3. Explain various models of locking a data item. Also explain two-phase locking protocol (Question No.

7)

4. Explain the various background process of Oracle in detail. (April 2015) (Question No. 9)

5. With a neat diagram discuss about architecture of MySQL in detail. (April 2015) (Question No. 10)

6. Discuss about Database Recovery procedure in detail. (April 2015)(NOV 2015) (Question No. 11)

7. State and explain the Two-phase locking protocol with and example. (NOV 2015) (Question No. 3)

8. Explain about the Concurrency Control. (NOV 2014)[Question No.: 04]

9. Explain about the Recovery System for Database Management System. (NOV 2014)

 [Question No.: 05]

10. Explain typically available storages media in detail (April 2011)[Question No.: 01]

	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	UNION OPERATION
	THE SET DIFFERENCE OPERATION:
	THE CARTESIAN-PRODUCT OPERATION
	THE RENAME OPERATION:

	ADDITIONAL OPERATIONS:
	THE SET-INTERSECTION OPERATION
	THE NATURAL-JOIN OPERATION
	THE DIVISION OPERATION:
	Step 1:
	Step 2:
	Step 3:
	THE ASSIGNMENT OPERATION:

	SQL keywords : SQL keywords fall into several groups.
	(i). Data retrieval: The most frequently used operation in transactional databases is the data retrieval operation. When restricted to data retrieval commands, SQL acts as a declarative language.
	Data manipulation: First there are the standard Data Manipulation Language (DML) elements. DML is the subset of the language used to add, update and delete data.
	Data definition: The second group of keywords is the Data Definition Language (DDL). DDL allows the user to define new tables and associated elements. Most commercial SQL databases have proprietary extensions in their DDL, which allow control over no...
	Data control
	Different strokes:
	Pseudoset operators

	Subqueries: Wouldn't it be nice if you could perform one query, temporarily store the result(s), and then use this result as part of another query? You can, and the trickery used is called a subquery. The basic idea is that instead of a 'static' condi...
	Subqueries that return multiple values
	Correlated Subqueries
	How do we make a view?
	How do we limit access to a view?
	How do we remove a view?
	More things we can do with views

	Dynamic SQL
	What Is Dynamic SQL?
	Advantages and Disadvantages of Dynamic SQL
	When to Use Dynamic SQL
	Requirements for Dynamic SQL Statements
	How Dynamic SQL Statements Are Processed
	Methods for Using Dynamic SQL
	Method 1
	Method 2
	Method 3
	Method 4
	Guidelines
	Avoiding Common Errors

	For Example:
	UNION OPERATION

