
110

UNIT-V

WEB SERVICES
 Web Services can convert your application into a Web-application, which can

publish its function or message to the rest of the world.
 The basic Web Services platform is XML + HTTP.

5.1 INTRODUCTION TO WEB SERVICES
 Web Services can convert your applications into Web-applications.
 Web Services are published, found, and used through the Web.

What are Web Services?
 Web services are application components
 Web services communicate using open protocols
 Web services are self-contained and self-describing
 Web services can be discovered using UDDI
 Web services can be used by other applications
 XML is the basis for Web services

How does it Work?
 The basic Web services platform is XML + HTTP.
 XML provides a language which can be used between different platforms and

programming languages and still express complex messages and functions.
 The HTTP protocol is the most used Internet protocol.

Web services platform elements:
1. SOAP (Simple Object Access Protocol)
2. UDDI (Universal Description, Discovery and Integration)
3. WSDL (Web Services Description Language)

Why Web Services?

Interoperability has Highest Priority
 When all major platforms could access the Web using Web browsers,

different platforms couldn't interact. For these platforms to work together,
Web-applications were developed.

 Web-applications are simply applications that run on the web. These are built
around the Web browser standards and can be used by any browser on any
platform.

Web Services take Web-applications to the Next Level
 By using Web services, your application can publish its function or message

to the rest of the world.
 Web services use XML to code and to decode data, and SOAP to transport it

(using open protocols).
 With Web services, your accounting department's Win 2k server's billing

system can connect with your IT supplier's UNIX server.

111

Web Services have Two Types of Uses
1. Reusable application-components
 Web services can offer application-components like: currency conversion,

weather reports, or even language translation as services.
2. Connect existing software
 Web services can help to solve the interoperability problem by giving

different applications a way to link their data.
 With Web services you can exchange data between different applications

and different platforms.

Web Services Platform Elements
Web Services have three basic platform elements:

1. SOAP
2. WSDL and
3. UDDI

5.2 UDDI
Universal Description, Discovery and Integration (UDDI) are a directory service
where businesses can register and search for Web services.

What is UDDI
UDDI is a platform-independent framework for describing services, discovering
businesses, and integrating business services by using the Internet.
 UDDI stands for Universal Description, Discovery and Integration
 UDDI is a directory for storing information about web services
 UDDI is a directory of web service interfaces described by WSDL
 UDDI communicates via SOAP
 UDDI is built into the Microsoft .NET platform

What is UDDI Based On?
 UDDI uses World Wide Web Consortium (W3C) and Internet Engineering

Task Force (IETF) Internet standards such as XML, HTTP, and DNS
protocols.

 UDDI uses WSDL to describe interfaces to web services
 Additionally, cross platform programming features are addressed by adopting

SOAP, known as XML Protocol messaging specifications found at the W3C
Web site.

UDDI Benefits
 Any industry or businesses of all sizes can benefit from UDDI.
 Before UDDI, there was no Internet standard for businesses to reach their

customers and partners with information about their products and services.
Nor was there a method of how to integrate into each other's systems and
processes.

Problems the UDDI specification can help to solve
 Making it possible to discover the right business from the millions currently

online
 Defining how to enable commerce once the preferred business is discovered
 Reaching new customers and increasing access to current customers

112

 Expanding offerings and extending market reach
 Solving customer-driven need to remove barriers to allow for rapid

participation in the global Internet economy
 Describing services and business processes programmatically in a single,

open, and secure environment

How can UDDI be Used
 If the industry published an UDDI standard for flight rate checking and

reservation, airlines could register their services into an UDDI directory.
 Travel agencies could then search the UDDI directory to find the airline's

reservation interface.
 When the interface is found, the travel agency can communicate with the

service immediately because it uses a well-defined reservation interface.

Who is Supporting UDDI?
 UDDI is a cross-industry effort driven by all major platform and software

providers like Dell, Fujitsu, HP, Hitachi, IBM, Intel, Microsoft, Oracle, SAP,
and Sun, as well as a large community of marketplace operators, and e-
business leaders.

 Over 220 companies are members of the UDDI community.

UDDI has two parts:
1. A registry of all a web service's metadata including a pointer to the WSDL

description of a service.
2. A set of WSDL port type definitions for manipulating and searching that

registry.

UDDI Elements
A business or company can register three types of information into a UDDI registry.
This information is contained into three elements of UDDI.
These three elements are:

(1) White pages:
This category contains:
 Basic information about the Company and its business.
 Basic contact information including business name, address, contact phone

number etc.
 A unique identifiers for the company tax IDs. This information allows others to

discover your web service based upon your business identification.

(2) Yellow pages:
This category contains:
 This has more details about the company, and includes descriptions of the

kind of electronic capabilities the company can offer to anyone who wants to
do business with it.

 It uses commonly accepted industrial categorization schemes, industry codes,
product codes, business identification codes and the like to make it easier for
companies to search through the listings and find exactly what they want.

113

(3) Green pages:
This category contains technical information about a web service. This is what allows
someone to bind to a Web service after it's been found. This includes:
 The various interfaces
 The URL locations
 Discovery information and similar data required to find and run the Web

service.

UDDI Technical Architecture:
The UDDI technical architecture consists of three parts:

1. UDDI data model:
 An XML Schema for describing businesses and web services. The data

model is described in detail in the "UDDI Data Model" section.

2. UDDI API Specification:
 A Specification of API for searching and publishing UDDI data.

3. UDDI cloud services:
 This is operator sites that provide implementations of the UDDI

specification and synchronize all data on a scheduled basis.

Fig 5.1: UDDI Architecture

 The UDDI Business Registry (UBR), also known as the Public Cloud, is a
conceptually single system built from multiple nodes that has their data
synchronized through replication.

 The current cloud services provide a logically centralized, but physically
distributed, directory. This means that data submitted to one root node will
automatically be replicated across all the other root nodes. Currently, data
replication occurs every 24 hours.

 UDDI cloud services are currently provided by Microsoft and IBM.
It is also possible to set up private UDDI registries. For example, a large company
may set up its own private UDDI registry for registering all internal web services. As
these registries are not automatically synchronized with the root UDDI nodes, they
are not considered part of the UDDI cloud.

UDDI Data Model:
UDDI includes an XML Schema that describes four five data structures:

114

1. businessEntity
2. businessService
3. bindingTemplate
4. tModel
5. publisherAssertion

Business Entity data structure:
 The business entity structure represents the provider of web services. Within

the UDDI registry, this structure contains information about the company itself,
including contact information, industry categories, business identifiers, and a
list of services provided.

Business Service Data Structure:
 The business service structure represents an individual web service provided

by the business entity. Its description includes information on how to bind to
the web service and what type of web service it is.

Binding Template Data Structure:
 Binding templates are the technical descriptions of the web services

represented by the business service structure. A single business service may
have multiple binding templates. The binding template represents the actual
implementation of the web service.

5.3 SOAP
SOAP INTRODUCTION:
 SOAP is a simple XML-based protocol to let applications exchange

information over HTTP.
 SOAP is a protocol for accessing a Web Service.

What is SOAP?
 SOAP stands for Simple Object Access Protocol
 SOAP is a communication protocol
 SOAP is for communication between applications
 SOAP is a format for sending messages
 SOAP communicates via Internet
 SOAP is platform independent
 SOAP is language independent
 SOAP is based on XML
 SOAP is simple and extensible
 SOAP allows you to get around firewalls
 SOAP is a W3C recommendation

Why SOAP?
 It is important for application development to allow Internet communication

between programs.
 Today's applications communicate using Remote Procedure Calls (RPC)

between objects like DCOM and CORBA, but HTTP was not designed for this.
RPC represents a compatibility and security problem; firewalls and proxy
servers will normally block this kind of traffic.

115

 A better way to communicate between applications is over HTTP, because
HTTP is supported by all Internet browsers and servers. SOAP was created to
accomplish this.

 SOAP provides a way to communicate between applications running on
different operating systems, with different technologies and programming
languages.

SOAP SYNTAX:

SOAP Building Blocks
A SOAP message is an ordinary XML document containing the following elements:

1. An Envelope element that identifies the XML document as a SOAP
message.

2. A Header element that contains header information.
3. A Body element that contains call and response information.
4. A Fault element containing errors and status information.

All the elements above are declared in the default namespace for the SOAP
envelope:

http://www.w3.org/2001/12/soap-envelope
and the default namespace for SOAP encoding and data types is:

http://www.w3.org/2001/12/soap-encoding

Syntax Rules
Here are some important syntax rules:

 A SOAP message MUST be encoded using XML
 A SOAP message MUST use the SOAP Envelope namespace
 A SOAP message MUST use the SOAP Encoding namespace
 A SOAP message must NOT contain a DTD reference
 A SOAP message must NOT contain XML Processing Instruction

Skeleton SOAP Message
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Header>
...

</soap:Header>
<soap:Body>

...
<soap:Fault>

...
</soap:Fault>

</soap:Body>
</soap:Envelope>

1. SOAP Envelope Element:
 The required SOAP Envelope element is the root element of a SOAP

message.
 This element defines the XML document as a SOAP message.

http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-encoding

116

Example
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
...
Message information goes here
...
</soap:Envelope>

The xmlns:soap Namespace
 Notice the xmlns:soap namespace in the example above. It should always

have the value of: "http://www.w3.org/2001/12/soap-envelope".
 The namespace defines the Envelope as a SOAP Envelope.
 If a different namespace is used, the application generates an error and

discards the message.

The encoding Style Attribute
 The encoding Style attribute is used to define the data types used in the

document. This attribute may appear on any SOAP element, and applies to
the element's contents and all child elements.

 SOAP message has no default encoding.

Syntax
soap:encodingStyle="URI"

Example
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
...
Message information goes here
...
</soap:Envelope>

2. SOAP Header:

The SOAP Header Element
 The optional SOAP Header element contains application-specific information

(like authentication, payment, etc) about the SOAP message.
 If the Header element is present, it must be the first child element of the

Envelope element.
Note: All immediate child elements of the Header element must be

namespace-qualified.

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:Header>

<m:Trans xmlns:m="http://www.w3schools.com/transaction/"

117

soap:mustUnderstand="1">234
</m:Trans>

</soap:Header>
...
...
</soap:Envelope>

 The example above contains a header with a "Trans" element, a "must
understand" attribute with a value of 1, and a value of 234.

 SOAP defines three attributes in the default namespace
("http://www.w3.org/2001/12/soap-envelope"). These attributes are: must
Understand, actor, and encoding Style.

 The attributes defined in the SOAP Header defines how a recipient should
process the SOAP message.

The must Understand Attribute
 The SOAP must understand attribute can be used to indicate whether a

header entry is mandatory or optional for the recipient to process.
 If you add must Understand="1" to a child element of the Header element it

indicates that the receiver processing the Header must recognize the element.
If the receiver does not recognize the element it will fail when processing the
Header.

Syntax
soap:mustUnderstand="0|1"

The actor Attribute
 A SOAP message may travel from a sender to a receiver by passing different

endpoints along the message path. However, not all parts of a SOAP
message may be intended for the ultimate endpoint, instead, it may be
intended for one or more of the endpoints on the message path.

 The SOAP actor attribute is used to address the Header element to a specific
endpoint.

Syntax
soap:actor="URI"

The encoding Style Attribute
 The encoding Style attribute is used to define the data types used in the

document. This attribute may appear on any SOAP element, and it will apply
to that element's contents and all child elements.

 A SOAP message has no default encoding.
Syntax

soap:encodingStyle="URI"

3. SOAP Body Element
 The required SOAP Body element contains the actual SOAP message

intended for the ultimate endpoint of the message.
 Immediate child elements of the SOAP Body element may be namespace-

qualified.

118

Example
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:Body>
<m:GetPrice xmlns:m="http://www.w3schools.com/prices">
<m:Item>Apples</m:Item>
</m:GetPrice>
</soap:Body>
</soap:Envelope>

The example above requests the price of apples. Note that the m:GetPrice and the
Item elements above are application-specific elements. They are not a part of the
SOAP namespace.
A SOAP response could look something like this:

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:Body>
<m:GetPriceResponse xmlns:m="http://www.w3schools.com/prices">
<m:Price>1.90</m:Price>
</m:GetPriceResponse>
</soap:Body>
</soap:Envelope>

4. SOAP Fault Element
 The SOAP Fault element holds errors and status information for a SOAP

message.
 The optional SOAP Fault element is used to indicate error messages.
 If a Fault element is present, it must appear as a child element of the Body

element. A Fault element can only appear once in a SOAP message.

SOAP Example
In the example below, a GetStockPrice request is sent to a server. The request has
a StockName parameter, and a Price parameter that will be returned in the response.
The namespace for the function is defined in "http://www.example.org/stock".

SOAP request:
POST /InStock HTTP/1.1
Host: www.example.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-

envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.example.org/stock">
<m:GetStockPrice>
<m:StockName>IBM</m:StockName>
</m:GetStockPrice>

119

</soap:Body>
</soap:Envelope>

SOAP response:
HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-

envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.example.org/stock">
<m:GetStockPriceResponse>
<m:Price>34.5</m:Price>
</m:GetStockPriceResponse>

</soap:Body>
</soap:Envelope>

5.4 WSDL
WSDL (Web Services Description Language) is an XML-based language for
describing Web services and how to access them.

Introduction to WSDL
 WSDL is an XML-based language for describing Web services and how to

access them.

What is WSDL?
 WSDL stands for Web Services Description Language
 WSDL is written in XML
 WSDL is an XML document
 WSDL is used to describe Web services
 WSDL is also used to locate Web services
 WSDL is a W3C recommendation

WSDL Describes Web Services
 WSDL stands for Web Services Description Language.
 WSDL is a document written in XML. The document describes a Web service.

It specifies the location of the service and the operations (or methods) the
service exposes.

WSDL Documents
 A WSDL document is just a simple XML document.
 It contains set of definitions to describe a web service.

The WSDL Document Structure:
A WSDL document describes a web service using these major elements:

Element Description

120

<types> A container for data type definitions used by the web service
<message> A typed definition of the data being communicated
<portType> A set of operations supported by one or more endpoints
<binding> A protocol and data format specification for a particular port type

The main structure of a WSDL document looks like this:
<definitions>

<types>
data type definitions........

</types>
<message>

definition of the data being communicated....
</message>
<portType>

set of operations......
</portType>
<binding>

protocol and data format specification....
</binding>

</definitions>
A WSDL document can also contain other elements, like extension elements, and a
service element that makes it possible to group together the definitions of several
web services in one single WSDL document.

WSDL Ports:
 The <portType> element is the most important WSDL element.
 It describes a web service, the operations that can be performed, and the

messages that are involved.
 The <portType> element can be compared to a function library (or a module,

or a class) in a traditional programming language.

WSDL Messages
 The <message> element defines the data elements of an operation.
 Each message can consist of one or more parts. The parts can be compared

to the parameters of a function call in a traditional programming language.

WSDL Types
 The <types> element defines the data types that are used by the web service.
 For maximum platform neutrality, WSDL uses XML Schema syntax to define

data types.

WSDL Bindings
 The <binding> element defines the data format and protocol for each port

type.

WSDL Example
This is a simplified fraction of a WSDL document:

<message name="getTermRequest">
<part name="term" type="xs:string"/>

121

</message>
<message name="getTermResponse">

<part name="value" type="xs:string"/>
</message>
<portType name="glossaryTerms">

<operation name="getTerm">
<input message="getTermRequest"/>
<output message="getTermResponse"/>

</operation>
</portType>

 In this example the <portType> element defines "glossaryTerms" as the
name of a port, and "getTerm" as the name of an operation.

 The "getTerm" operation has an input message called "getTermRequest"
and an output message called "getTermResponse".

 The <message> elements define the parts of each message and the
associated data types.

 Compared to traditional programming, glossaryTerms is a function library,
"getTerm" is a function with "getTermRequest" as the input parameter, and
getTermResponse as the return parameter.

WSDL PortType
The <portType> element is the most important WSDL element.

WSDL - The <portType> Element
 The <portType> element defines a web service, the operations that can be

performed, and themessages that are involved.
 <portType> defines the connection point to a web service. It can be compared

to a function library (or a module, or a class) in a traditional programming
language. Each operation can be compared to a function in a traditional
programming language.

Operation Types
The request-response type is the most common operation type, but WSDL defines
four types:
Type Definition
One-way The operation can receive a message but will not return a

response
Request-response The operation can receive a request and will return a

response
Solicit-response The operation can send a request and will wait for a

response
Notification The operation can send a message but will not wait for a

response
One-Way Operation
A one-way operation example:

<message name="newTermValues">
<part name="term" type="xs:string"/>

122

<part name="value" type="xs:string"/>
</message>
<portType name="glossaryTerms">

<operation name="setTerm">
<input name="newTerm" message="newTermValues"/>
</operation>

</portType >

 In the example above, the portType "glossaryTerms" defines a one-way
operation called "setTerm".

 The "setTerm" operation allows input of new glossary terms messages using
a "newTermValues" message with the input parameters "term" and "value".
However, no output is defined for the operation.

Request-Response Operation
A request-response operation example:

<message name="getTermRequest">
<part name="term" type="xs:string"/>

</message>
<message name="getTermResponse">

<part name="value" type="xs:string"/>
</message>
<portType name="glossaryTerms">

<operation name="getTerm">
<input message="getTermRequest"/>
<output message="getTermResponse"/>

</operation>
</portType>

 In the example above, the portType "glossaryTerms" defines a request-
response operation called "getTerm".

 The "getTerm" operation requires an input message called "getTermRequest"
with a parameter called "term", and will return an output message called
"getTermResponse" with a parameter called "value".

5.5 Web Service Architecture (WSA)

Web services are
 Applications that enable remote procedure calls over a network or the Internet

often using XML and HTTP.
 Web services architecture is an interoperability architecture-it identifies those

global elements of the global web services network that are required in order
to ensure interoperability between web services.

Web Service Model:

123

Fig 5.2 Web Service

Roles in Web Service architecture
1. Service provider

 Owner of the service.
 Platform that hosts access to the service.

2. Service requestor
 Business that requires certain functions to be satisfied.
 Application looking for and invoking an interaction with a service.

3. Service registry
 Searchable registry of service descriptions where service

providers publish their service descriptions.

Operations in Web Service Architecture
 Publish

Service descriptions need to be published in order for service requestor to find
them.

 Find
Service requestor retrieves a service description directly or queries the
service registry for the service required.

 Bind
Service requestor invokes or initiates an interaction with the service at runtime.

Web services specification and technologies
 Security - for Web services confidentiality, integrity, authentication, and

authorization.
 Process flow - for arranging the flow of execution across Web services.
 Transactions - for coordinating the results of multiple Web services.
 Messaging - for configuring message paths and routing messages reliably

across multiple network hops.

Web Services involve three major roles
1. Service Provider
2. Service Registry
3. Service Consumer

Three major operations surround web services
 Publishing – making a service available
 Finding – locating web services
 Binding – using web services

124

Security
 Security is one of the most important and most complex issues in the Internet

and Web services.
 Basic security issues include

o data confidentiality and integrity—to ensure your credit card number,
o Authentication/authorization, which deals with the rights of individuals

or groups to access a certain resource, such as a given Web service
interface.

SAML
 Security Assertions Markup Language (SAML) provides a standard way to

profile information in XML documents and to define user identification and
authorization information.

XKMS
 The XML Key Management Specification (XKMS) defines a protocol for

distributing and registering public keys used in encrypting and decrypting
messages transmitted using SOAP.

 XML-based security standards
o authentication and authorization (SAML)
o public key management (XKMS).
o WS-License and WS-Security
o fundamental to all Internet security,
o the firewalls that protect private networks

5.6 AJAX –improving web page performance using AJAX
AJAX = Asynchronous JavaScript and XML.
 AJAX is not a new programming language, but a new way to use existing

standards.
 AJAX is the art of exchanging data with a server, and updating parts of a web

page – without reloading the whole page.

AJAX Introduction
 AJAX is about updating parts of a web page, without reloading the whole

page.

What is AJAX?
 AJAX = Asynchronous JavaScript and XML.
 AJAX is a technique for creating fast and dynamic web pages.
 AJAX allows web pages to be updated asynchronously by exchanging small

amounts of data with the server behind the scenes. This means that it is
possible to update parts of a web page, without reloading the whole page.

 Classic web pages, (which do not use AJAX) must reload the entire page if
the content should change.

 Examples of applications using AJAX: Google Maps, Gmail, Youtube, and
Facebook tabs.

How AJAX Works

125

Fig 5.3 Working of AJAX

AJAX is based on Internet Standards
AJAX is based on internet standards, and uses a combination of:

 XMLHttpRequest object (to exchange data asynchronously with a server)
 JavaScript/DOM (to display/interact with the information)
 CSS (to style the data)
 XML (often used as the format for transferring data)
 AJAX applications are browser and platform-independent!

Google Suggest
 AJAX was made popular in 2005 by Google, with Google Suggest.
 Google Suggest is using AJAX to create a very dynamic web interface: When

you start typing in Google's search box, a JavaScript sends the letters off to a
server and the server returns a list of suggestions.

AJAX Example
To understand how AJAX works, we will create a small AJAX application:
<html>

<head>
<script>
function loadXMLDoc()
{

var xmlhttp;
if (window.XMLHttpRequest)
{ // code for IE7+, Firefox, Chrome, Opera, Safari

xmlhttp=new XMLHttpRequest();
}
else
{ // code for IE6, IE5

xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");
}
xmlhttp.onreadystatechange=function()
{

if (xmlhttp.readyState==4 && xmlhttp.status==200)
{

http://www.google.com/

126

document.getElementById("myDiv").innerHTML=xmlhttp.responseText;
}

}
xmlhttp.open("GET","ajax_info.txt",true);
xmlhttp.send();

}
</script>

</head>
<body>

<div id="myDiv"><h2>Let AJAX change this text</h2></div>
<button type="button" onclick="loadXMLDoc()">Change

Content</button>
</body>

</html>

OUTPUT:
Let AJAX change this text

AJAX XMLHttpRequest:
AJAX - Create an XMLHttpRequest Object
 The keystone of AJAX is the XMLHttpRequest object.

The XMLHttpRequest Object
 All modern browsers support the XMLHttpRequest object (IE5 and IE6 use an

ActiveXObject).
 The XMLHttpRequest object is used to exchange data with a server behind

the scenes. This means that it is possible to update parts of a web page,
without reloading the whole page.

Create an XMLHttpRequest Object
All modern browsers (IE7+, Firefox, Chrome, Safari, and Opera) have a built-in
XMLHttpRequest object.

Syntax for creating an XMLHttpRequest object:
variable=new XMLHttpRequest();

Old versions of Internet Explorer (IE5 and IE6) uses an ActiveX Object:
variable=new ActiveXObject("Microsoft.XMLHTTP");

To handle all modern browsers, including IE5 and IE6, check if the browser supports
the XMLHttpRequest object. If it does, create an XMLHttpRequest object, if not,
create an ActiveXObject:
Example
var xmlhttp;
if (window.XMLHttpRequest)
{ // code for IE7+, Firefox, Chrome, Opera, Safari
xmlhttp=new XMLHttpRequest();
}

else

127

{ // code for IE6, IE5
xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");
}

AJAX - Send a Request To a Server
 The XMLHttpRequest object is used to exchange data with a server.

Send a Request To a Server
To send a request to a server, we use the open() and send() methods of the
XMLHttpRequest object:

xmlhttp.open("GET","ajax_info.txt",true);
xmlhttp.send();

Method Description

open(method,url,async)

Specifies the type of request, the URL, and if the request
should be handled asynchronously or not.
method: the type of request: GET or POST
url: the location of the file on the server
async: true (asynchronous) or false (synchronous)

send(string) Sends the request off to the server.
string: Only used for POST requests

GET or POST?
GET is simpler and faster than POST, and can be used in most cases.
However, always use POST requests when:

 A cached file is not an option (update a file or database on the server)
 Sending a large amount of data to the server (POST has no size limitations)
 Sending user input (which can contain unknown characters), POST is more

robust and secure than GET

AJAX - Server Response
Server Response
To get the response from a server, use the responseText or responseXML property
of the XMLHttpRequest object.

Property Description
responseText get the response data as a string
responseXML get the response data as XML data

The responseText Property
 If the response from the server is not XML, use the responseText property.
 The responseText property returns the response as a string, and you can use

it accordingly:

Example
document.getElementById("myDiv").innerHTML=xmlhttp.responseText;

The responseXML Property

128

 If the response from the server is XML, and you want to parse it as an XML
object, use the responseXML property:

Example
Request the file cd_catalog.xml and parse the response:
xmlDoc=xmlhttp.responseXML;
txt="";
x=xmlDoc.getElementsByTagName("ARTIST");
for (i=0;i<x.length;i++)
{
txt=txt + x[i].childNodes[0].nodeValue + "
";
}
document.getElementById("myDiv").innerHTML=txt;

5.7 PROGRAMMING IN AJAX

<html>
<head>

<script type="text/javascript">
function loadXMLDoc()
{

var xmlhttp;

if (window.XMLHttpRequest)
{ // code for IE7+, Firefox, Chrome, Opera, Safari

xmlhttp=new XMLHttpRequest();
}
else
{ // code for IE6, IE5

xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");
}
xmlhttp.onreadystatechange=function()
{

if (xmlhttp.readyState==4 && xmlhttp.status==200)
{

document.getElementById("myDiv").innerHTML=xmlhttp.responseText;
}

}
xmlhttp.open("GET","ajax_info.txt",true);
xmlhttp.send();

}
</script>

</head>
<body>

<div id="myDiv"><h2>Let AJAX change this text</h2></div>
<button type="button" onclick="loadXMLDoc()">Change

Content</button> </body></html>
Output:

AJAX is not a new programming language.

http://www.w3schools.com/ajax/cd_catalog.xml

129

AJAX is a technique for creating fast and dynamic web pages.

Load an XML file with AJAX
<html>

<head>
<script type="text/javascript">

function loadXMLDoc(url)
{

var xmlhttp;
if (window.XMLHttpRequest)
{ // code for IE7+, Firefox, Chrome, Opera, Safari

xmlhttp=new XMLHttpRequest();
}
else
{ // code for IE6, IE5

xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");
}
xmlhttp.onreadystatechange=function()
{
if (xmlhttp.readyState==4 && xmlhttp.status==200)
{

document.getElementById('A1').innerHTML=xmlhttp.status;

document.getElementById('A2').innerHTML=xmlhttp.statusText;

document.getElementById('A3').innerHTML=xmlhttp.responseText;
}
}
xmlhttp.open("GET",url,true);
xmlhttp.send();
}

</script>
</head>

<body>
<h2>Retrieve data from XML file</h2>
<p>Status:</p>
<p>Status text:</p>
<p>Response:</p>
<button onclick="loadXMLDoc('note.xml')">Get XML data</button>

</body>
</html>
Output:

Retrieve data from XML file
Status: 200
Status text: OK
Response: Tove Jani Reminder Don't forget me this weekend! s

	5.1 INTRODUCTION TO WEB SERVICES
	What are Web Services?
	How does it Work?

	Why Web Services?
	Interoperability has Highest Priority
	Web Services take Web-applications to the Next Lev
	Web Services have Two Types of Uses

	Web Services Platform Elements
	What is UDDI
	What is UDDI Based On?
	UDDI Benefits
	How can UDDI be Used
	Who is Supporting UDDI?
	UDDI Elements
	(1) White pages:
	(2) Yellow pages:
	(3) Green pages:
	UDDI Technical Architecture:
	1.UDDI data model:
	2.UDDI API Specification:
	3.UDDI cloud services:
	It is also possible to set up private UDDI registr
	UDDI Data Model:
	Business Entity data structure:
	Business Service Data Structure:
	Binding Template Data Structure:
	What is SOAP?
	Why SOAP?
	SOAP SYNTAX:
	SOAP Building Blocks
	Syntax Rules
	A SOAP message must NOT contain XML Processing Ins
	Skeleton SOAP Message
	1. SOAP Envelope Element:
	Example

	The xmlns:soap Namespace
	The encoding Style Attribute
	Syntax
	Example

	2. SOAP Header:
	The SOAP Header Element
	The must Understand Attribute
	Syntax

	The actor Attribute
	Syntax

	The encoding Style Attribute
	Syntax
	Example

	4. SOAP Fault Element
	SOAP Example
	SOAP request:
	SOAP response:

	Introduction to WSDL
	What is WSDL?
	WSDL Describes Web Services
	WSDL Documents
	The WSDL Document Structure:
	WSDL Ports:
	WSDL Messages
	WSDL Types
	WSDL Bindings
	WSDL Example
	WSDL PortType
	WSDL - The <portType> Element
	Operation Types
	One-Way Operation
	Request-Response Operation

	AJAX Introduction
	What is AJAX?
	How AJAX Works
	Fig 5.3 Working of AJAX
	AJAX is based on Internet Standards
	Google Suggest

	AJAX Example
	Let AJAX change this text
	AJAX XMLHttpRequest:

	AJAX - Create an XMLHttpRequest Object
	The XMLHttpRequest Object
	Create an XMLHttpRequest Object
	Example

	 AJAX - Send a Request To a Server
	Send a Request To a Server
	GET or POST?
	Server Response
	The responseText Property
	Example
	Example
	Retrieve data from XML file

