
UNIT I
Object Oriented Methodologies: Software System Life Cycle – Traditional cycle models –
Object Oriented approach – Rambaugh et al Object Modeling Technique – Booch Methodology
– Jacobsonet al methodology –Rational Unified Process (RUP) – Unified Modeling Language
(UML) – UML Models.

1.1 THE SYSTEM LIFE CYCLE
Framework is very important for the development of a software system. An agreed framework
for development brings many advantages:

1. A framework provides an overall picture of the development process; this picture is not
cluttered by detail of what goes on at any stage in the process, but is useful as a high-
level view of the major areas of activity, milestones and project deliverables.

2. A framework provides a basis for development and ensures a certain level of consistency
in how the work is
approached.

3. Consistency approach is
very important when large of
developers are involved in
the project after it has started.

4. A framework plays a
significant role in ensuring
quality, both of the
development process and of
the final system, by
providing a structure for
project management-
planning, monitoring and
controlling the development
project.

In software system development, a
framework has traditionally been
known as a system life cycle model.
The stages that have been referred
for life cycle as requirements,
analysis, design, implementation
and installation. Each stage is
concerned with particular issues and produces a set of outputs or deliverables shown in the below
table



1.2 TRADITIONAL LIFE CYCLE: The most important traditional life cycle models are:
1.2.1 Waterfall Model :

1. This is the early life cycle model; stages of development are straightforward sequence.
2. It describes a development method that is linear and sequence
3. It has distinct goals for each phase of development.
4. Once a phase of development is completed, the development proceeds to the next phase

and is turning back.
Requirements: List of requirements for
development.
Design: Process of problem solving and
planning for a software solution.
Implementation: Coding
Testing: Make sure that the complete
system meets software requirements.
Maintenance: modification of the
product after deliver to correct faults.
1.2.2 V-model:

1. Stages are visualized in the form of the letter 'V'.
2. It emphasizes how later stages of development are related to earlier stages; for example,

how testing should be derived from the activities that are carried out during requirements
and analysis.

1.2.3 Spiral.
1. It incorporates iteration of life cycle stages and focuses on identifying and addressing the

risks involved in development.
2. At each iteration around the cycle, the products are extensions of an earlier stage.

1.2.4 Prototyping.
1. In the prototyping life cycle, implementation takes place early in the development

process.
2. The working model produced is subsequently refined and enhanced during a series of

iterations until it is acceptable to the client.

1.2.5 Iterative Development:
1. This approach is closely related to the spiral model and to prototyping.
2. It covering the complete functionality of the system is produced and then refined as

development progresses.
1.2.6 Incremental development.

1. In this life cycle model the system is partitioned according to areas of functionality.
2. Each major functional area is developed and delivered independently to the client.

1.3 THE OBJECT-ORIENTED APPROACH
One of the differences that is immediately obvious between traditional life cycle models and the
object-oriented approach is the way that the various stages are named.
Traditional Life Cycle model Object Oriented approach



Traditional model the name, such as
‘analysis’ or ‘implementation’,
reflects the activities that are
intended to be carried out in that
stage.

A clear distinction is made between the activities and
the stages (generally referred to as phases) of
development.

Phases are inception, elaboration, construction and
transition. indicating the state of the system

1.3.1 Phases
o Inception:
It covers the initial work required to set up and agree terms for the project. It includes
establishing the business case for the project, incorporating basic risk assessment and the scope
of the system that is to be developed.
o Elaboration:

It deals with putting the basic architecture of the system in place and agreeing a plan for
construction. During this phase a design is produced that shows that the system can be developed
within the agreed constraints of time and cost.
o Construction:

It involves a series of iterations covering the bulk of the work on building the system; it ends
with the beta release of the system, which means that it still has to undergo rigorous testing.

o Transition
It covers the processes involved in transferring the system to the clients and users. This includes
sorting out errors and problems that have arisen during the development process.
In object-orientation, activities such as analysis or design are referred to as workflows. The
below figure shows the different workflows that typically take place during a system
development project.

It is recognized that a workflow may be carried out at more than one development phase and that
developers may well engage in the whole range of workflows during every phase of building a
system.
During the construction phase the main activities will be implementation and testing, but if bugs
are found there will have to be some requirements and analysis as well.
The OO approach to development views the relationships between workflows and phases of
development rather like the spider’s web in the below figure, where any phase may involve all
workflows, and a workflow may be carried out during any phase.



The object-oriented approach also recognizes fully the reality of iterative development. Activities
at any phase do not take place in a neatly ordered fashion.
A developer may have to revisit a range of workflows several times during one phase of
development, before it is possible to move on to the next phase.
The below figure illustrates the phases of the object-oriented life cycle with iteration of
workflows at each phase.
In the diagram that iterations are most likely during construction, but can occur during any phase
of development. Each ellipse represents a range of workflows.

In addition to the emphasis on iterative development, the object-oriented approach also differs
from traditional life cycle models in that it stresses the importance of a seamless development
process.
This means that the separate phases are less distinct from each other than in a traditional system
life cycle; it is not considered essential, nor is it often easy, to be able to say precisely when one
phase is completed and another begins.
Although the traditional system life cycle was concerned about issues such as quality, ease of
modification and potential reuse, it tended to regard them as add-ons to the core development
process.
In the object-oriented approach such issues are regarded as central, and developers are
encouraged to bear them in mind throughout the time they are working on the system.
1.3.1 RAMBAUGH ET AL OBJECT MODELING TECHNIQUE Object modelling
techniques (OMT) presented by Jim Rambaugh describes a method for the analysis, design and
implementation of a system using OOT. It is a fast, intuitive approach for identifying and
modelling all the object making up a system. This model lets you specify detailed state
transitions their descriptions within in a system. It consists of 4 phases:



1. Analysis: The results are objects and dynamic and functional models.
2. System Design: The results are structure of a basic architecture of the system along with the
high –level strategy decisions.
3. Object Design: This phase produce a design document, consisting of a detailed objects static,
dynamic and functional models.
4. Implementation: This activity produces reusable, extendible and robust code.
OMT separates modeling into three different parts:
1. Object model: presented by the object model and data dictionary.
2. Dynamic model: presented by the state diagrams and event flow diagrams.
3. Functional model: presented by data flow and constraints.
1.3.1 THE OBJECT MODEL It describes structure of object in the system; their identity and
relationship to other objects, attributes and operations. The figure below shows object model
with graphical representation

1.3.2 THE DYNAMIC MODEL It provides detailed and comprehensive dynamic model, in
addition to letting you depict states, transitions, events and actions. The below figure shows state
transition is a network of states and events.

1.3.3 THE FUNCTIONAL MODEL It shows the flow of data between different processes in a
business. The OMT DFD provides a simple and intuitive method for describing business
processes without focusing on the details of computer systems. DFD use 4 primary symbols:
1. The process is any function being performed; example verifying Password/PIN in ATM.



2. The data flow shows the direction of data element movement; example PIN code.
3. The data store is a location where the data are stored; example account data store in ATM
4. The external entity is a source/ destination of a data element; example ATM card reader

1.4 THE RATIONAL UNIFIED PROCESS (RUP)
A life cycle provides a high-level representation of the stages that a development project must go
through to produce a successful system.
A development method, on the other hand, is much more prescriptive, often setting down in
detail the tasks, responsibilities, processes, prerequisites, deliverables and milestones for each
stage of the project.
Nowadays, almost all object-oriented projects use the Unified Modeling Language as the
principal tool in their development process.

Use of the UML has been approved by the Object Management Group (OMG), which controls
issues of standardization in this area. This has resulted in conformity between projects in terms
of notation and techniques.
The creators of the UML have proposed a generic object-oriented development The Unified
Software Development Process (Jacobson et al., 1999) and this generic method has been adopted
and marketed by the Rational Corporation under the name of the Rational Unified Process (RUP).
RUP is based on the following six 'Best Practices'
1 Develop software iteratively
2 Manage requirements
3 Use component-based architectures
4 Visually model software
5 Verify software quality
6 Control changes to software.

1. Develop software iteratively
 RUP follows the phases of the generic object-oriented life cycle (inception, elaboration,
construction and transition). It is built on the central concept of iterative development and
each of its phases defines a series of activities that may be performed once or a number of
times.

 Each iteration is defined as a complete development loop resulting in the release of an
executable product that is a subset of the final system.

 In this way RUP supports incremental development- the frequent release of small packages of
software that gradually build up to become the final system.

 Iteration and incremental development encourage involvement and feedback from clients and
users; they make it easier to cope with changes, and reduce the risk factors associated with
any development project.

2. Manage requirements
 RUP offers sound support for eliciting, organizing and recording requirements. Precise
documentation of requirements facilitates traceability through the development process, which
enhances the quality of the final system.

 The emphasis on the activities that take place early on in the life cycle provides a sound
foundation for the later stages and results in systems that are robust, reliable and meet the
needs of their users.



3. Use component-based architectures
 RUP prescribes the early identification and development of a system structure that is at the
same time robust enough to ensure system reliability, and flexible enough to accommodate
changes. This is achieved through the use of components subsystems that each have a single,
well-defined function.

 RUP describes how to construct an architecture combining both new and previously existing
components, thus encouraging the reuse of software as part of the development process.

4. Visually model software
 RUP is based around the Unified Modelling Language (UML) as a vehicle for development.
UML has become an industry standard, and incorporates a wide range of techniques and
tools to support developers. The techniques offered by UML bring with them all the
advantages of visual modelling.

 For example, UML diagrams facilitate communication between developers and users and
between members of the development team, they offer a number of different views of the
system which combine to give a complete picture, they help developers to decompose the
problem into smaller, more manageable chunks, and they provide a means of abstraction,
concentrating on important information while hiding details that are currently irrelevant.

5. Verify software quality
 RUP provides the techniques to support quality assessment of functionality, reliability and
performance throughout the development process.

 The RUP approach to quality is based on objective measures and criteria for success; it
involves all members of the development team and applies to all the activities that are carried
out as part of the system development.

6. Control changes to software
 Changes are the norm in a software development project, so an effective development
process must be able to monitor and control them.

 RUP provides tools to do this, and also supports the work of developers by offering
protection in one area of development from changes that occur in another.

1.5 UNIFIED MODELLING LANGUAGE (UML)
The Unified Modelling Language, or UML, is a set of diagrammatic techniques, which are
specifically tailored for OOD, and which have become an industry standard for modelling object-
oriented systems.

1.5.1 Modelling:
Software developers use specialized diagrams to model the system that they are working

on throughout the development process. Each model produced represents part of the system or
some aspect of it, such as the structure of the stored data, or the way that operations are carried
out. Each model provides a view of the system, but not the whole picture.

1.5.2. Abstraction:



The characteristic of a model to provide some but not all the information about the person
or thing being modelled is known as abstraction. Each of the modelling techniques in the
Unified Modelling Language provides a particular view of the system as it develops; each UML
model is an abstraction of the complete system. Abstraction, concentrates on only those aspects
of the system that are currently of interest, and putting other details to the side for the time being.

1.5.3. Decomposition:
This is the breaking down of a large, complex problem or system into successively

smaller parts, until each part is a 'brain-size' chunk and can be worked on as an independent unit.
Traditionally software systems used to be decomposed according to their functions - the tasks
that the system had to carry out. In OO, systems are decomposed according to the data that they
have to store, access and manipulate.

1.6 UML MODELS
The UML is not a development

method since it does not prescribe what
developers should do, it is a diagrammatic
language or notation, providing a set of
diagramming techniques that model the
system from different points of view.

The below table shows the principal
UML models with a brief description of
what each can tell us about the developing
system.
The 4 + 1 view. The authors of UML,
Booch et al., (1999), suggest the
architecture of a system from five different
perspectives or views:
 The use case view
 The design view
 The process view
 The implementation view
 The deployment view.

This is known as the 4 + 1 view (rather than the 5 views) because of the special role played
by the use case view.

The Use Case view:
it specifies what the user wants the system to do; the other 4 views describe how to

achieve this.
The use case view describes the external behavior of the system and is captured in the use

case model

The Design view:
It sometimes called as logical view. Describes the logical structures required to provide

the functionality specified in the use case view.
The design view describes the classes (including attributes and operations) of the system

and their interactions.



The Process view:
It is concerned with describing concurrency in the system.
Sequence diagram can be used to achieve it.

The Implementation view:
It describes the physical software components of the system, such as executable files,

class libraries and databases.
The view of the system can be modeled using component diagram

The Deployment view:
This view describes the hardware components of the system such as PCs, mainframes,

printers and the way they are connected.
This view can also be used to show where software components are physically installed

on the hardware elements.


