

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SUBJECT NAME: PLATFORM TECHNOLOGY SUBJECT CODE: CS T73
PREPARED BY: Mrs. K.ANDAL AP/CSE

UNIT 1

1. Write about the .NET framework?

.NET FRAMEWORK

.NET Framework is a programming infrastructure created by Microsoft for building,

deploying, and running applications and services that use .NET technologies, such as

desktop applications and Web services. The .NET Framework is a new computing

platform that simplifies application development in the highly distributed environment

of the Internet Services.

.NET FRAMEWORK SERVICES

.NET Framework provides the following services namely,

 Tools for developing software applications

 Run-time environments for software application to execute

 Server infrastructure

 Value added intelligent software which helps developers to do less coding and

work efficiently.

.NET FRAMEWORK OBJECTIVES

The .Net Framework will enable developers to develop applications for various

devices and platforms like windows application, web applications windows services and

web services.

The .NET Framework is designed to fulfill the following objectives:

 A consistent object-oriented programming environment, where object code can be

stored and executed locally, executed locally but Internet-distributed, or executed

remotely.

 A code-execution environment that minimizes software deployment and

versioning conflicts.

 A code-execution environment that guarantees safe execution of code, including

code created by an unknown or semi-trusted third party.

 A code-execution environment that eliminates the performance problems of

scripted or interpreted environments.

 Developers can experience consistency across widely varying types of

applications, such as Windows-based applications and Web-based applications.

 Build all communication on industry standards to ensure that code based on the

.NET Framework can integrate with any other code.

.NET FRAMEWORK ARCHITECTURE

The .NET Framework has two components: the .NET Framework class library and

the common language runtime.
The .NET Framework class library facilitates types (CTS) that are common to all

.NET languages.The common language runtime consists of (class loader) that load the
IL code of a program into the runtime, which compiles the IL code into native code,
and executes and manage the code to enforce security and type safety, and provide
thread support.

Fig 1.1 .NET framework

.NET Framework Architecture has languages at the top such as VB .NET C#, VJ#,
VC++ .NET; developers can develop (using any of above languages) applications such
as Windows Forms, Web Form, Windows Services and XML Web Services. Bottom two
layers consist of .NET Framework class library and Common Language Runtime.

Common Language Runtime

 The .NET Framework provides a run-time environment called the common

language runtime, which runs the code and provides services that make the

development process easier.

 The common language runtime makes it easy to design components and

applications whose objects interact across languages.

.net framework class library

The .NET framework class library, as the name suggests, is a library of classes,

interfaces and value types. The applications, components and controls for applications

are built on this framework and it provides the developer the access to the system

functionality.

2.Explain briefly about the CLR

COMMON LANGUAGE RUNTIME (CLR)

 The .NET Framework provides a run-time environment called the common

language runtime, which runs the code and provides services that make the

development process easier.

 The common language runtime makes it easy to design components and

applications whose objects interact across languages.

 Objects written in different languages can communicate with each other, and

their behaviors can be tightly integrated. For example, you can define a class

and then use a different language to derive a class from the original class or call

a method on the original class.

 We can also pass an instance of a class to a method of a class written in a

different language.

BENEFITS
The runtime provides the following benefits:

 Performance improvements.

 The ability to easily use components developed in other languages.

 Extensible types provided by a class library.

 Language features such as inheritance, interfaces, and overloading for object-

oriented programming.

 Garbage collection.

 Use of delegates instead of function pointers for increased type safety and

security.

Fig 1.2 Common Language Runtime (CLR)

 Class loader: Loads classes into CLR.

 MSIL to native code compile: Converts MSIL code into native code.

 Code manager: Manages the code during execution.

 Memory allocation and Garbage collector: Performs automatic memory

management.

 Security engine: Enforces security restrictions as code level security folder

level and machine level security using tools provided by Microsoft .NET and

using .NET Framework setting under control panel.

 Type checker: Enforces strict type checking.

 Thread support: Provides multithreading support to applications.

 Exception manager: Provides a mechanism to handle the run-time exceptions

handling.

 Debug engine: Allows developer to debug different types of applications.

 COM marshaler: Allows .NET applications to exchange data with COM

applications.

 Base class library support: which provides the classes (types) that the

applications need at run time.

The language compiler compiles the source code into the MSIL code which consists

of CPU- independent code and instructions which is platform independent. MSIL

consists of the followings:

 Instructions performs arithmetic and logical operations.

 Access memory directly.

 Control the flow of execution.

 Handles exceptions.

MSIL code can be compiling into CPU specific instructions before executing, for

which the CLR requires information about the code which is nothing but metadata.

Metadata describes the code and defines the types that the code contains as well

referenced to other types which the code uses at run time.

An assembly consists of portable executable file. At the time of executing PE file the

class loader loads the MSIL code and the metadata form the portable executable file

into the run time memory.CLR forms the heart of the .Net framework.

3. Explain briefly about the Framework Class Library (FCL)

(OR)
Write in detail about the namespaces in .NET framework?

.NET FRAMEWORK CLASS LIBRARY

 The .NET framework class library, as the name suggests, is a library of

classes, interfaces and value types. The applications, components and

controls for applications are built on this framework and it provides the

developer the access to the system functionality

 The .NET Framework class Library is organized into namespaces. The

namespace is a container for functionality. Similar classes and constructs

are grouped together in a namespace to define parent-child relationships.

Namespaces can be nested into namespaces.

 All namespaces stem from the root namespace called System Namespace.

 It contains all data types including the Object data type.

 Though all namespaces are subordinated to the System namespace, User

defined libraries can also coexist with the System namespace. They can have

their own root namespace which can be language focused namespaces such

as Microsoft.Csharp, Microsoft.VisualBasic.

 The most significant feature of the .NET framework is the class Library

collection of reusable types can be integrated with CLR.

 The programmer can accomplish a range of common programming tasks,

such as string management; data collection; data base connectivity and file

access using the .NET framework class library.

 The developer can create console applications, Windows GUI applications,

ASP.NET applications, XML Web services or Windows services.

 The .NET Framework class library is a library of classes, interfaces, and

value types that are included in the Microsoft .NET Framework SDK. This

library provides access to system functionality and is designed to be the

foundation on which .NET Framework applications, components, and

controls are built.

NAMESPACES IN .NET FRAMEWORK

The .NET Framework class library provides the following namespaces:

 System

The root of the tree, this namespace contains all of the other namespaces in the .Net

Framework class library. System also contains the core data types used by the CLR.

These types include several varieties of integers, a string type, and many more.

 System.Windows.Forms

The types in this namespace make up Windows Forms, and they are used to build

Windows GUIs. Rather than relying on language-specific mechanisms, such as the

older Microsoft Foundation Classes (MFC) in C++, .Net Framework applications

written in any programming language use this common set of types to build

graphical interfaces for Windows.

 System.Collections

Contains interfaces and classes that define various collections of objects, such as lists,

queues, bit arrays, hashtables and dictionaries.

 System.ComponentModel

Provides classes that are used to implement the run-time and design-time behavior of

components and controls. This namespace includes the base classes and interfaces for

implementing attributes and type converters, binding to data sources, and licensing

components.

 System.Configuration

Provides classes and interfaces that allow you to programmatically access .NET

Framework configuration settings and handle errors in configuration files (.config

files).

 System.Configuration.Assemblies

Contains classes that are used to configure an assembly.

 System.Configuration.Install

Provides classes that allow you to write custom installers for your own components.

The Installer class is the base class for all custom installers in the .NET Framework.

USAGE

The class library reference documentation can be filtered by language, so that

you can view syntax, descriptions, and examples for one language (either Visual Basic,

C#, the Managed Extensions for C++, or JScript) or all four languages at once. To filter

by language, click the filtering icon at the top of any reference page and select a

language or choose Show All.

EXCEPTIONS

All instance methods in the class library throw an instance of
NullReferenceException when an attempt is made to call the method and the
underlying object holds a null reference.

4. Write short notes on windows forms?

NET WINDOWS FORMS

WINDOWS FORMS

 Windows Forms is a smart client technology for the .NET Framework, a set of

managed libraries that simplify common application tasks such as reading and

writing to the file system.

 When you use a development environment like Visual Studio, you can create

Windows Forms smart-client applications that display information, request

input from users, and communicate with remote computers over a network.

 In Windows Forms, a form is a visual surface on which you display information

to the user.

 You ordinarily build Windows Forms applications by adding controls to forms

and developing responses to user actions, such as mouse clicks or key presses.

A control is a discrete user interface (UI) element that displays data or accepts

data input.

 When a user does something to your form or one of its controls, the action

generates an event. Your application reacts to these events by using code, and

processes the events when they occur.

 Windows Forms contains a variety of controls that you can add to forms:

controls that display text boxes, buttons, drop-down boxes, radio buttons, and

even Web pages.

 BUILDING APPLICATION WITH WINDOWS FORMS

 In window forms, every form is an instance of the Form class, while the

message loop that accepts and distributes events is provided by a class called

Application.

 Using these and other classes in System.Windows.Forms, a developer can

create a single-document interface (SDI) application, able to display only one

document at a time, or a multiple-document interface (MDI) application, able to

display more than one document simultaneously.

WINDOWS FORMS PROPERTIES

 Each instance of the form class has a large set of properties that control how that

form looks on the screen. Among them are Text, which indicates what caption should

be displayed in the title bar; Size, which controls the form’s initial on-screen size;

DesktopLocation, which determines where on the screen the form appears; and many

more. Developers set these properties to customize a form’s appearance and behavior.

WINDOWS FORMS CONTROLS

 Forms commonly contain other classes called Windows Forms Controls.

 Each of these controls typically displays some kind of output, accepts some

input from the user, or both.

 The System.Windows.Forms namespace provides a large set of controls, many

of which will be familiar to anyone who’s built or even used a GUI.

 The control classes available in this namespace include Button, TextBox,

CheckBox, RadioButton, ListBox, ComboBox, and many more.

 Also provided are more complex controls such as OpenFileDialog, which

encapsulates the operations that let a user open a file; SaveFileDialog, which

encapsulates the operations that let a user save a file; PrintDialog, which

encapsulates the operations that let a user print a document; and several

others.

WINDOWS FORMS CONTROLS PROPERTIES

 Like a form, each control has properties that can be set to customize its

appearance and behavior. Many of these properties are inherited from

System.Window.Forms.Control, the base class for every control.

 The Button control, for example, has a location property that determines where

the button will appear relative to its container and a size property that

determines how big the on-screen button will be, both of which are directly

inherited from the parent Control class.

EXAMPLE: CONSIDER BUTTON CONTROL

EVENTS

 Forms and controls also support events.

 Some examples of common events include

 Click, indicating that a mouse click has occurred;

 GotFocus, indicating that the form or control has been selected by the

user

 KeyPress, indicating that a key has been pressed.

 A developer can create code to handle events received by a form or control.

Called an event handler, this code determines what happens when the event

occurs.

5. Uses Of Web Forms & Web Services

USES OF WEB FORMS & WEB SERVICES

 An important part of Visual Studio .NET is the ability to create distributed

applications based around the Web. Visual Studio .NET allows you to create the

application user interface using Web Forms pages and to create components

using XML Web services.

 Web Forms is the ASP.NET technology that allows you to create a user interface

for Web-based applications, whether customers are accessing your application

from a traditional Web browser or a mobile device. Using Web Forms pages, you

can create a browser-neutral UI that does its processing on the Web server,

freeing you of the need to create browser-specific (or device-specific) versions of

your user interface.

 XML Web services are components that run on the server and typically include

business logic. Like traditional components, they encapsulate specific

functionality and can be called from different programs. However, they are

available via Web protocols, making them compatible with programs running in

different languages, on different computers, and even on different operating

systems.

Interoperability has Highest Priority

When all major platforms could access the Web using Web browsers, different

platforms could interact. For these platforms to work together, Web-applications were

developed. Web-applications are simple applications that run on the web. These are

built around the Web browser standards and can be used by any browser on any

platform.

Web Services take Web-applications to the Next Level

By using Web services, your application can publish its function or message to the

rest of the world.Web services use XML to code and to decode data, and SOAP to

transport it (using open protocols).

Reusable application-components
There are things applications need very often.Web services can offer application-

components like: currency conversion, weather reports, or even language translation
as services.
Connect existing software

Web services can help to solve the interoperability problem by giving different
applications a way to link their data. With Web services you can exchange data
between different applications and different platforms.

6. Explain about Common Type System (CTS) and Common Language

Specification (CLS)

CTS and CLS are parts of .NET CLR and are responsible for type safety with in the

code. Both allow cross language communication and type safety.

COMMON TYPE SYSTEM

CTS stands for Common Type System. It defines the rules which Common Language

Runtime follows when declaring, using, and managing types. The common type system

performs the following functions:

 It enables cross-language integration, type safety, and high-performance code

execution.

 It provides an object-oriented model for implementation of many programming

languages.

 It defines rules that every language must follow which runs under .NET

framework. It ensures that objects written in different .NET Languages like C#,

VB.NET, F# etc. can interact with each other.

For example, C# has int Data Type and VB.Net has Integer Data Type. Hence a

variable declared as int in C# or Integer in vb.net, finally after compilation, use the

same structure Int32 from CTS.

VALUE TYPE AND REFERENCE TYPE

 A Substantial subset of the types defined by the CTS is shown in the figure
below.

Fig 1.4 Value type and Reference type

1) The first thing to note is that every type inherits either directly or indirectly from a
type called Object.
2)The second thing to note is that every type defined by the CTS is either a reference
type or a value type.
3)As the name suggest, an instance of a reference type always contains the value itself.
Reference types inherit directly from Object, while all value types inherit directly from
a type called ValueType, which in turn inherits from Object.

Value Types

 All value types inherit from ValueType. Like Object, ValueType provides an Equals

method. Value types cannot act as a parent type for inheritance, however, so it’s not

possible to say, define a new type that inherits from Int32.

Many of the value types are defined by the CTS. Those types are as follows:

• Byte: An 8-bit unsigned integer

• Char: A 16 – bit Unicode character.

• Int16, Int32, and Int64: 16-, 32-, and 64- bit unsigned Integers.

• Single and Double: Single-precision (32-bit) and double-precision (64-bit)

floating-point numbers.

• Decimal: 96-bit decimal numbers.

• Enum: A way to name a group of values of some integer type. Enumerated types

inherit from System.Enum and are used to define types whose values have

meaningful names rather than just numbers.

• Boolean: True or False

Reference Types

Compared with most value types, the reference types defined by the CTS are

relatively complicated. Before describing some of the more important reference types,

it’s useful to look first at a few elements, officially known as type members that are

common to several types. Those elements are as follows:

• Methods: Executable code that carries out some kind of operation. Methods can

be overloaded, which means that a single type can define two or more methods

with the same name. To distinguish among them, each of these identical named

methods must differ somehow in its parameter list. Another way to say this is to

state that each method must have a unique signature. If a method encounters

an error, it can throw an exception, which provides some indication of what has

gone wrong, provides some indication of what has gone wrong.

• Fields: A value of some type.

• Events: A mechanism for communicating with other types. Each event includes

methods for subscribing and unsubscribing and for sending the event to

subscribers.

• Properties: In effect, a value together with specified methods to read and/or

write that value.

• Nested Types: A type is defined inside another type. A common example of this

is defining a class that is nested inside another class.

• Class: A CTS class can have methods, events, and properties; it can maintain its

state in one or more fields; and it can contain nested types. A class’s visibility

can be public, which means it’s available to any other type, or assembly, which

means it’s available only to other classes in the same assembly. Classes have

one or more constructors, which are initialization methods that execute when a

new instance of this class is created. A class can directly inherit from at most

one other class and can act as the direct parent for at most one inheriting child

class.

• Interface: AN Interface can include methods, properties, and events. Unlike

classes, interfaces do support multiple inheritance, so an interface can inherit

from one or more other interfaces simultaneously. An interface does not

actually implement anything, however. Instead, it provides a way to group type

definition together; leaving the implementation to whatever type supports the

interface.

• Array: An array is a group of values of the same type. Arrays can have one or

more dimensions, and their upper bounds and lower bounds can be set more or

less arbitrarily. All arrays inherit from a common System.Array type.

• Delegate: A delegate is effectively a pointer to a method. All delegates inherit

from a common System.Delegate type, and they are commonly used for event

handling and callbacks. Each delegate has a set of associated members called

an invocation list. When the delegate is invoked, each member on this list gets

called; with each one passed the parameters that the delegate received.

Value Type Vs Reference Type

A basic difference between value types and reference types is that a standalone
instance of a value type is allocated on the stack, while an instance of a reference type
has only a reference to its actual value allocated on the stack. The value itself is
allocated on the heap.

 Fig 1.5 Stack and Heap

The figure 4 shows the abstract picture of how this looks. In the case shown here,

three instances of value types – Int16, Char, and Int32 – have been created on the

managed stack, while one instance of the reference type instance has an entry on the

stack – it’s a reference to the memory on the heap – but the instance’s contents are

stored on the heap. Understanding the distinction between value types and reference

types is essential in understanding the CTS type system and, ultimately, the types

used by CLR-based languages.

Converting Value Types to Reference Types: Boxing32

 There are cases when an instance of a value type needs to be treated as an instance

of a reference type. For example, suppose we would like to pass an instance of a value

type as a parameter to some method, but that parameter is defined to be a reference to

a value rather than the value itself. For situations like this, a value type instance can

be converted into reference type instance through a process called Boxing.

 When a value type instance is boxed, storage is allocated on the heap, and the

instance’s value is copied into that space. A Reference to this storage is placed on the

stack, as shown in the figure.

Fig 1.6 Boxing

 A boxed value type instance can also be converted back to its original form, a
process called unboxing.

COMMON LANGUAGE SPECIFICATION

 CLS stands for Common Language Specification and it is a subset of CTS. It

defines a set of rules and restrictions that every language must follow which

runs under .NET framework.

 The languages which follows these set of rules are said to be CLS Compliant. In

simple words, CLS enables cross-language integration.

 For example, one rule is that you cannot use multiple inheritance within .NET

Framework. As you know C++ supports multiple inheritance but; when you will

try to use that C++ code within C#, it is not possible because C# doesn’t

supports multiple inheritance.

 One another rule is that you cannot have members with same name with case

difference only i.e. you cannot have add() and Add() methods. This easily works

in C# because it is case-sensitive but when you will try to use that C# code in

VB.NET, it is not possible because VB.NET is not case-sensitive.

7. Give a brief note on MSIL?

MICROSOFT INTERMEDIATE LANGUAGE (MSIL)

When source code written in a CLR-based language is compiled, two things are

produced:

• Instructions expressed in Microsoft Intermediate Language (MSIL), and

• Metadata, information about those instructions and the data they manipulate.

The figure illustrates this process. The code being compiled contains three CTS

types, all of them classes. When this code is compiled using whatever compiler is

appropriate for the language it’s written in, the result is an equivalent set of MSIL code

for each class along with metadata describing those classes.

Both the MSIL and the metadata are stored in a standard Windows portable

executable (PE) file. This can be either a DLL or an EXE file.

Fig 1. 7: Microsoft Intermediate language (MSIL)

FEATURES

MSIL is quite similar to a processor’s native instruction set. However, no hardware

that actually executes these instructions is available. Instead, MSIL code is always

translated into native code for whatever processor this code is running on before it’s

executed. Here are a few example MSIL instructions and what they are used for:

• Add: Adds the top two values on the stack and pushes the result back onto the

stack.

• Box: Converts a value type to a reference type; that is, it boxes the value.

• Br: Transfers control to a specified location in memory

• Call: calls a specified method.

• Idfld: Loads a specified field of an object onto the stack.

• Idobj: Copies the value of a specified value type onto the stack.

• Newobj: Creates a new object or a new instance of a value type.

• Stfd: Stores a value from the stack into a specified field of an object.

• Stobj: stores a value on the stack into a specified value type.

• Unbox: Converts a boxed value type back to its ordinary form.

METADATA

Compiling managed code always produces MSIL. Compiling managed code also
always produces metadata describing that code. Metadata is information about the
types defined in the managed code it’s associated with, and it’s stored in the same file

as the MSIL generated from those types.
Compiling managed code generates MSIL and metadata compiling managed code

when managed code is compiled, two things are produced: instruction expressed in
MSIL (Microsoft Intermediate Language) and metadata.

Fig 1.8 A module contains metadata for each type in the file.

The figure 8 shows an abstract view of a module produced by a CLR-based

compiler. The file contains the MSIL code generated from the types in the original

program, which once again are the types in the original program, which once again are

the three classes X, Y and Z. Along with the code for the methods in each class, the file

contains metadata describing these classes and any other types defined in this file.

This information is loaded into memory when the file itself is loaded, making the

metadata accessible when the file itself is loaded, making the metadata accessible at

runtime. Metadata can also be read directly from the file contains it, making

information available even when code isn’t loaded into memory. The process of reading

metadata is known as reflection.

INFORMATION IN METADATA

Metadata describes the types contained in a module. Among the information it
stores for a type are the following things.

 The type’s name

 The type’s visibility, which can be public or assembly

 What type this type inherits from, if any

 Any interfaces the type implements

 Any methods the type implements

 Any properties the type exposes

 Any events the type provides.

 More detailed information is also available. For example, the description of each
method includes the method’s parameter and their types, along with the type of the
method’s return value.

ATTRIBUTES

 Metadata also includes attributes. Attributes are values that are stored in the

metadata and can be read and used to control various aspects of how this code

executes. Attributes can be added to types, such as classes, and to fields, methods,

and properties of those types.

Developers can also create custom attributes used to control behavior in an

application-specific way. To create a custom attribute, a developer using a CLR-based

programming languages such as C# or VB can define a class that inherits from

System. Attribute. An instance of the resulting class will automatically have its value

stored in metadata when it is compiled.

 8. Explain about the components of CLR

COMPONENTS OF CLR

Fig 1.9 Components of CLR

CTS(Common Type System)
CTS stands for Common Type System. It defines the rules which Common Language

Runtime follows when declaring, using, and managing types.

CLS (Common Language Specification)

CLS stands for Common Language Specification and it is a subset of CTS. It defines a
set of rules and restrictions that every language must follow which runs under .NET
framework. The languages which follow these set of rules are said to be CLS
Compliant. In simple words, CLS enables cross-language integration.

Code Manager

Code manager invokes class loader for execution.
.NET supports two kind of coding
 1) Managed Code
2) Unmanaged Code

• Managed Code
The resource, which is with in your application domain is, managed code. The

resources that are within domain are faster.The code, which is developed in .NET
framework, is known as managed code. This code is directly executed by CLR with
help of managed code execution. Any language that is written in .NET Framework is
managed code.

Managed code uses CLR which in turns looks after your applications by managing
memory, handling security, allowing cross - language debugging, and so on.
• Unmanaged Code

The code, which is developed outside .NET, Framework is known as unmanaged
code. Applications that do not run under the control of the CLR are said to be
unmanaged, and certain languages such as C++ can be used to write such

applications, which, for example, access low - level functions of the operating system.
Background compatibility with code of VB, ASP and COM are examples of unmanaged
code.

Unmanaged code can be unmanaged source code and unmanaged compile code.
Unmanaged code is executed with help of wrapper classes.

Wrapper classes are of two types: CCW (COM callable wrapper) and RCW (Runtime
Callable Wrapper).Wrapper is used to cover difference with the help of CCW and RCW.
COM callable wrapper unmanaged code.

Fig1.10 Unmanaged Code Execution Process

Native Code

The code to be executed must be converted into a language that the target operating
system understands, known as native code. This conversion is called compiling code,
an act that is performed by a compiler.
MSIL (Microsoft Intermediate Language)

 It is language independent code. When you compile code that uses the .NET
Framework library, we don't immediately create operating system - specific native
code.Instead, we compile our code into Microsoft Intermediate Language (MSIL) code.
The MSIL code is not specific to any operating system or to any language.
JIT (Just-in-Time)

 Just - in - Time (JIT) compiler, which compiles MSIL into native code that is

specific to the OS and machine architecture being targeted. Only at this point can the

OS execute the application. The just - in - time part of the name reflects the fact that

MSIL code is only compiled as, and when, it is needed.

Several JIT compilers exist, each targeting a different architecture, and the

appropriate one will be used to create the native code required.

 JIT are of three types:

• Pre JIT: It converts all the code in executable code and it is slow

• Econo JIT: It will convert the called executable code only. But it will convert code

every time when a code is called again.

• Normal JIT: It will only convert the called code and will store in cache so that it

will not require converting code again. Normal JIT is fast.

Assemblies

When you compile an application, the MSIL code created is stored in an assembly.

Assemblies include both executable application files that you can run directly from

Windows without the need for any other programs (these have a .exe file extension),

and libraries (which have a .dll extension) for use by other applications.In addition to

containing MSIL, assemblies also include meta information (that is, information about

the information contained in the assembly, also known as metadata) and optional

resources (additional data used by the MSIL, such as sound files and pictures).

Garbage Collection (GC)

One of the most important features of managed code is the concept of garbage

collection. This is the .NET method of making sure that the memory used by an

application is freed up completely when the application is no longer in use.

9. Distinguish Between the .NET Compilers

DISTINGUISH BETWEEN THE .NET COMPILERS

 The high level programming languages that need to be compiled require a
runtime, so that the architecture on which the language runs is provided with
details on how to execute its code.

 All the programming languages use its corresponding runtime to run the
application.

 For example, to run an application developed using Visual Basic, the computer
on which the application will be run must be installed with the Visual Basic
runtime. The Visual Basic runtime can run only the applications developed with
Visual Basic and not the ones developed with any other programming language

like Java.

 In the .NET Framework, all the Microsoft .NET languages use a common
language runtime, which solves the problem of installing separate runtime for
each of the programming languages.

 Microsoft .NET Common Language Runtime installed on a computer can run
any language that is Microsoft .NET compatible.

 The main advantage of the .NET Framework is the interoperability between
different languages. As all the Microsoft .NET languages share the same
common runtime language, they all work well together. For example, you can
use an object written in C# from Visual Basic.NET. The same applies for all the
other Microsoft .NET languages.

 When you compile a Microsoft.NET language, the complier generates code
written in the Microsoft Intermediate Language (MSIL). MSIL is a set of
instructions that can quickly be translated into native code.

 A Microsoft.NET application can be run only after the MSIL code is translated
into native machine code.

 In .NET Framework, the intermediate language is complied "just in time" (JIT)
into native code when the application or component is run instead of compiling
the application at development time.

SML.NET

SML.NET is a compiler for the functional programming language Standard ML that

targets the .NET Common Language Runtime and which supports language

interoperability features for easy access to .NET libraries.

 Major improvements to the Visual Studio Integration Package

Much more accurate and reliable Intellisense; hovering over a keyword reports the

type of its smallest enclosing expression; hovering over a pattern reports the types of

its bindings.

 Major improvements to Debugger Support

Bindings in the Locals window now enter and exit scope appropriately. The values

of sub-expressions, not just identifiers, are reported as locals in Locals window. Most

constructed values now have symbolic tags derived from the constructor name. Values

of heap-allocated SML datatypes now support ToString() and ToString(int depth)

methods that can be invoked in the VS Immediate window to inspect values at

runtime. Improved stepping behaviour. SML.NET stack frames now typically have

meaningful, not mangled, source names.

 Preliminary support for Whidbey

The distribution has been updated to support the current 2.0 release of the

Microsoft .NET Framework and Microsoft Visual Studio .NET 2005. SML.NET remains

compatible with the initial 1.0 and 1.1 releases. NB: Although SML.NET fully supports

SML polymorphism, it does not yet produce or consume .NET generics (we hope to in

future): this release just allows you to continue working with your existing SML.NET

code on the Whidbey platform.

 Improved code generation and performance

SML.NET now makes much better use of locals and the stack; pattern matching is

compiled as a switch when appropriate.

 Various bug fixes

Including: the annoying (but benign) overflow error when persisting compilation

units has been fixed; SML.NET now exploits some previously missed opportunities for

tail-recursion.

Features

 Support for all of Standard ML

 Support for the Basis library

 Seamless interoperability with other languages

SML.NET extends the SML language to support safe, convenient use of the .NET

Framework libraries and code written in other languages for the CLR, such as C# or

VB. SML.NET can both consume and produce .NET classes, interfaces, delegates etc.

 Command-line compilation

 SML.NET supports traditional compilation from the command-line.

 Interactive compilation environment

 Automatic dependency analysis

In either mode of compilation, the compiler requires only the names of root

modules and a place to look for source code. It then does dependency analysis to

determine which files are required and which need recompilation.

 Produces verifiable CLR IL

The output of the compiler is verifiable MSIL (Microsoft Intermediate Language)

for the CLR.

 Whole program optimization

SML.NET performs optimizations on a whole program (or library) at once. It

usually produces small executables with fairly good performance.

 Integration with Visual Studio .NET

A binary distribution includes an experimental package for Microsoft Visual Studio

.NET 2002, 2003 and & 2005 that allows you to edit, build and debug SML.NET

projects from within the development environment.

10. How are the managed code organized and executed?

ORGANISING AND EXECUTING MANAGED CODE

ORGANIZING MANAGED CODE: ASSEMBLIES

 In .Net Framework applications, files that make up a logical unit of

Functionality are grouped into an assembly.

 An assembly is one or more files that comprise a logical unit. Assemblies are

fundamental to developing, deploying, and running .Net Framework

applications.

Metadata for Assemblies: Manifests

 An assembly’s manifest, by contrast, contains information about all of the

modules and other files in an assembly.

 A manifest is metadata about an assembly.

 The manifest is contained in one of the assembly’s files, and it includes

information about the assembly and the files that comprise it.

 The figure shows, an assembly can be built from a single file or a group of files.

With a single-file assembly, the manifest is stored in the file itself.

 With a multiple assembly, the manifest is stored in one of the files in the

assembly

Among the things an assembly’s manifest includes are the following:

• The name of the assembly: All assemblies have a text name and can

optionally have a strong name.

• The assembly’s version number: This number has the form <major

version>.<minor version>.<build version>.<revision>. The versioning is per

assembly, not per the module.

Fig 1.11: Organizing Managed Code: Assemblies

• The assembly’s culture: indicating the culture or language an assembly

supports.

• A list of all files contained in this assembly, together with a hash value that’s

been computed from those files.

What other assemblies this one depends on and the version number of each of

those dependent assemblies.

Most assemblies consist of just a single DLL. Whether it contains one file or multiple
files, however, an assembly is logically an indivisible unit.
Categorizing Assemblies

 There are various ways to categorize assemblies. One distinction is between static

and dynamic assemblies.

 Static Assemblies

 Static assemblies are produced by a tool such as Visual Studio, and their contents

are stored on disc.

Dynamic Assembly

 The code (and metadata) for a dynamic assembly is created directly in memory and

can be executed immediately upon creation. Once it has been created, a dynamic

assembly can be saved to disk, then loaded and executed again. Probably the most

common examples of dynamic assemblies are those created by ASP.NET when it

processes .aspx pages.

Categorizing based on assembly name

 Another way to categorize assemblies is by how they are named. Completely

naming any assembly requires specifying three things: the assembly’s name; its

version number; and if one is provided, the culture it supports.

 All assemblies have simple text names, such as “Account Access”, but it also

includes the usual three parts of an assembly name.

 A strong name includes the usual three parts of an assembly name, but it also

includes a digital signature computed on the assembly and the public key that

corresponds to the private key used to create that signature.

EXECUTING MANAGED CODE

 Assemblies provide a way to package modules containing MSIL and metadata into

units for deployment. Assemblies are loaded into memory only when they are needed.

Loading Assemblies

 When an application built using the .NET Framework is executed, the

assemblies that make up that application must be found and loaded into

memory.

 Assemblies aren’t loaded until they’re needed, so if an application never calls

any methods in a particular assembly, that assembly won’t be loaded.

 If the assemblies are not loaded automatically, the CLR determines what

version of a particular assembly it’s looking for.

 By default, it will look only for the exact version specified for this assembly in

the manifest of the assembly from which the call originated.

 Once it has determined exactly which version it needs, the CLR checks whether

the desired assembly is already loaded. If it is, the search is over; this loaded

version will be used.

 If the desired assembly is not already loaded, the CLR will begin searching in

various places to find it.

 The first place the CLR looks is usually the global assembly cache (GAC), a

special directory intended to hold assemblies that are used by more than one

application.

 If the assembly it’s hunting for isn’t in the global assembly cache, the cache

continues its search by checking for a codebase element in one of the

configuration files for this application.

 If there is no codebase element, however, the CLR will begin its last-ditch

search for the desired assembly, a process called probing, in what’s known as

the application base. This can be either the root directory in which the

application is installed or a URL, perhaps on some other machine.

Compiling MSIL

 A compiler that produces managed code always generates MSIL. Yet MSIL can’t be

executed by any real processor. Before it can be run, MSIL code must be compiled yet

again into native code that targets the processor on which it will execute. Two options

exist for doing this: MSIL code can be compiled one method at a time during

execution, or it can be compiled into native code all at once before an assembly is

executed.

JIT Compilation

 The most common way to compile MSIL into native code is to let the CLR load an

assembly and then compile each method the first time that method is invoked.

Because each method is compiled only when it’s first called, the process is called just-

in-time (JIT) compilation.

The first time class Z’s method 1 is called, the JIT compiler is invoked to translate the

method’s MSIL into native code

This is simple example that shows just three classes, once again called X, Y and

Z, each containing some number of methods. In the Figure only method 1 of

class Y has been compiled. All other code in all other methods of the three

classes is still in MSIL, the form in which it was loaded. When class Y’s method

1 calls class Z’s method 1, the CLR notices that this newly called method is not

in an executable form. The CLR invokes the JIT compiler, which class Z’s

method 1 and redirects calls made to that method to this compiled native code.

The method can now execute.

When Class Y’s method 4 is called, the JIT compiler is once again used to translate the

method’s MSIL into native code.

Fig 1.14 When class Z’s method 1 is called again, no compilation is necessary

Figure shows what happens when class Y’s method 1 again calls method 1 in class Z.

This method has already been JIT compiled, so there’s no need to do any more work.

The native code has been saved in memory, so it just executes. The JIT compiler isn’t

involved. The process continues in this same way, with each method compiled the first

time it is invoked.

11. Write about serialization

SERIALIZATION

 Serialization is a process of converting an object into a stream of data so that

it can be is easily transmittable over the network or can be continued in a

persistent storage location.

 This storage location can be a physical file, database or ASP.NET Cache.

 The advantage of serialization is the ability to transmit data across the network

in a cross-platform-compatible format, as well as saving it in a persistent or

non-persistent storage medium in a non-proprietary format.

 Serialization is used by Remoting, Web Services SOAP for transmitting data

between a server and a client. De-serialization is the reverse; it is the process of

reconstructing the same object later.

 The Remoting technology of .NET makes use of serialization to pass objects by

value from one application domain to another.

 Serialization in .NET is provided by

the System.Runtime.Serialization namespace. This namespace contains an

interface called IFormatter which in turn contains the methods Serialize and

De-serialize that can be used to save and load data to and from a stream.

 In order to implement serialization in .NET, we basically require a stream and a

formatter. While the stream acts as a container for the serialized object(s), the

formatter is used to serialize these objects onto the stream.

 The basic advantage of serialization is the ability of an object to be serialized

into a persistent or a non-persistent storage media and then reconstructing the

same object if required at a later point of time by de-serializing the object.

 Remoting and web services depend heavily on Serialization and De-serialization.

WORKING WITH FORMATTERS

 A formatter is used to determine the serialization format for objects.

 They expose an interface called the IFormatterinterface. IFormatter's significant
methods are Serialize and De-serialize which perform the actual serialization
and de-serialization.

 There are two formatter classes provided within .NET, the BinaryFormatter and
theSoapFormatter. Both these classes extend the IFormatter interface.

The figure illustrates the serialization process. As the figure shows, an instance of a
class can be run through a formatter that extracts the state of this object in a

particular form. The binary formatter emits that state information in a simple and
compact form, while the SOAP formatter generates the same information wrapped in
XML and formatted as a SOAP message. While the outputs shown in the figure are
simplified – the binary formatter actually stores integers in binary form, for instance –
they illustrate the key difference between the two serialization options built into the
.NET Framework class library.

ADVANTAGES AND DISADVANTAGES OF SERIALIZATION

Advantages

 Modification of XML documents without using the DOM.
 Passing an object from one application to another.
 Passing an object from one domain to another.

 Passing an object through a firewall as an XML string

Disadvantages

The primary disadvantage of serialization can be attributed to the resource overhead
(both the CPU and the IO devices) that is involved in serializing and de-serializing the

data and the latency issues that are involved for transmitting the data over the
network. Further, serialization is quite slow. Moreover, XML serialization is insecure,
consumes a lot of space on the disk and it works on public members
and public classes and not on the privateor internal classes. Therefore, it compels the
developer to allow the class to be accessed by the outside world.

12. Explain briefly about the input and output?

INPUT AND OUTPUT NAMESPACE

The System.IO namespace contains types that allow reading and writing to files
and data streams, and types that provide basic file and directory support.

Classes

 The table shows the classes with their descriptions.

Table 1.2 Classes (write any 10)

Class Description

BinaryReader Reads primitive data types as binary
values in a specific encoding.

BinaryWriter Writes primitive types in binary to a
stream and supports writing strings in a
specific encoding.

BufferedStream Adds a buffering layer to read and write
operations on another stream. This class
cannot be inherited.

Directory Exposes static methods for creating,
moving, and enumerating through
directories and subdirectories.

DirectoryInfo Exposes instance methods for creating,
moving, and enumerating through
directories and subdirectories.

DirectoryNotFoundException The exception that is thrown when part of
a file or directory cannot be found.

EndOfStreamException The exception that is thrown when
reading is attempted past the end of a
stream.

http://aspalliance.com/983_Introducing_Serialization_in_NET.3
http://msdn.microsoft.com/en-us/library/system.io.binaryreader(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.binarywriter(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.bufferedstream(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.directory(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.directoryinfo(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.directorynotfoundexception(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.endofstreamexception(v=VS.71).aspx

ErrorEventArgs Provides data for the Error event.

File Provides static methods for the creation,
copying, deletion, moving, and opening of
files, and aids in the creation of
FileStream objects.

FileInfo Provides instance methods for the
creation, copying, deletion, moving, and
opening of files, and aids in the creation of
FileStream objects.

FileLoadException The exception that is thrown when a
managed assembly is found but cannot be
loaded.

FileNotFoundException The exception that is thrown when an
attempt to access a file that does not exist
on disk fails.

FileStream Exposes a Stream around a file,
supporting both synchronous and
asynchronous read and write operations.

FileSystemEventArgs Provides data for the directory events:
Changed, Created, Deleted.

FileSystemInfo
Provides the base class for both FileInfo
and DirectoryInfo objects.

FileSystemWatcher
Listens to the file system change
notifications and raises events when a
directory, or file in a directory, changes.

InternalBufferOverflowException The exception thrown when the internal
buffer overflows.

IODescriptionAttribute Sets the description visual designers can
display when referencing an event,
extender, or property.

IOException The exception that is thrown when an I/O

error occurs.

MemoryStream Creates a stream whose backing store is
memory.

Path Performs operations on String instances
that contain file or directory path
information. These operations are
performed in a cross-platform manner.

PathTooLongException The exception that is thrown when a
pathname or filename is longer than the
system-defined maximum length .

RenamedEventArgs Provides data for the Renamed event.

http://msdn.microsoft.com/en-us/library/system.io.erroreventargs(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher.error(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.file(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filestream(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.fileinfo(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filestream(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.fileloadexception(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filenotfoundexception(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filestream(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.stream(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filesystemeventargs(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher.changed(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher.created(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher.deleted(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filesysteminfo(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.fileinfo(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.directoryinfo(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.internalbufferoverflowexception(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.iodescriptionattribute(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.ioexception(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.memorystream(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.path(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.string(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.pathtoolongexception(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.renamedeventargs(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher.renamed(v=VS.71).aspx

Stream Provides a generic view of a sequence of
bytes.

StreamReader Implements a TextReader that reads
characters from a byte stream in a
particular encoding.

StreamWriter Implements a TextWriter for writing
characters to a stream in a particular
encoding.

StringReader Implements a TextReader that reads from
a string.

StringWriter Implements a TextWriter for writing
information to a string. The information is
stored in an underlying StringBuilder.

TextReader Represents a reader that can read a
sequential series of characters.

TextWriter Represents a writer that can write a
sequential series of characters. This class
is abstract.

Structures(write all)

Structure Description

WaitForChangedResult Contains information on the change that
occurred.

Delegates(write all)

Delegate Description

ErrorEventHandler Represents the method that will handle
the Error event of a FileSystemWatcher.

FileSystemEventHandler Represents the method that will handle
the Changed, Created, or Deleted event of
a FileSystemWatcher class.

RenamedEventHandler
Represents the method that will handle
the Renamed event of a
FileSystemWatcher class.

Enumerations(write all)

Enumeration Description

FileAccess Defines constants for read, write, or
read/write access to a file.

FileAttributes Provides attributes for files and

http://msdn.microsoft.com/en-us/library/system.io.stream(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.streamreader(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.textreader(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.streamwriter(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.textwriter(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.stringreader(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.textreader(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.stringwriter(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.textwriter(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.text.stringbuilder(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.textreader(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.textwriter(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.waitforchangedresult(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.erroreventhandler(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher.error(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filesystemeventhandler(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher.changed(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher.created(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher.deleted(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.renamedeventhandler(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher.renamed(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/4z36sx0f(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.io.fileattributes(v=VS.71).aspx

directories.

FileMode Specifies how the operating system should
open a file.

13. How does .NET incorporate with the XML?

WORKING WITH XML

Microsoft .NET provides a good variety of ways to work with .xml files. For instance,

the Dataset object includes methods that allow users to load the contents of .xml files
to a database table or to save the table to an .xml file. Microsoft .NET libraries also
have specific classes used to parse .xml files.

Normally, XML parsers use either Document Object Model (DOM) or Simple API for
XML (SAX). DOM parsers read the whole document and create the document scheme
in memory. They provide random access to elements of .xml files and allow developers
to read and write information from or to .xml files.

SAX provides read-only access to .xml files. However, it uses less memory and
works faster than DOM.

SAX is an event-driven push parser. When it reads an XML document it generates
specific events. To handle these events, an application must implement a specific
event-handler interface that contains methods which handle appropriate events:

Fig 1.19 Working of XML Parser

An alternative to the push model is the pull one. A pull parser does not "push"
events to the application for processing. Instead, the application pulls data from the
parser by calling special methods of the parser object:

http://msdn.microsoft.com/en-us/library/system.io.filemode(v=VS.71).aspx

Fig 1.20 Working of XML Parser with inteface

In many cases the pull model is more convenient than the push one, which is why

most parsers implement the pull model.We will work with an .xml file, dataset.xml,

which is generated from the following table (MS SQL Server):

Table 1.3 Fields

Field Type

 ID INTEGER (the identity column)

 Text TEXT

 VarChar VARCHAR(100)

 Data DECIMAL

XmlReader:

Like SAX parsers, XMLReader provides forward-only read-only access to .xml
files. However, unlike SAX parsers, it uses the pull model. Note that XMLReader is
an abstract class (MustOverride in VB). To parse .xml files we will use its
descendant, XMLTextReader.

XMLDocument
The XMLDocument object works with .xml files using DOM (Document Object

Model): It implements W3C Document Object Model (DOM) Level 1 Core and Core
DOM Level 2. XMLDocument contains specific methods used to read and write XML
documents and navigate the DOM tree.
DataSet

One of the ways to process data stored in an .xml file is to load this file to a
dataset and then process the data in the dataset fields. When the processing is over,
the dataset records can be exported to an .xml file.
Profiling

To measure the performance of XMLReader, XmlDocument and Dataset objects
we've created several tables with a different number of records.

14. Write short notes on remoting?

REMOTING

 Remoting provides a framework that allows objects to interact with one another

across application domains.

 The framework provides a number of services, including activation and lifetime

support, as well as communication channels responsible for transporting

messages to and from remote applications.

 Formatters are used for encoding and decoding the messages before they are

transported by the channel.

 Applications can use binary encoding where performance is critical, or XML

encoding where interoperability with other remoting frameworks is essential.

 All XML encoding uses the SOAP protocol in transporting messages from one

application domain to the other.

Types of .NET Remotable Objects

There are three types of objects that can be configured to serve as .NET remote
objects. You can choose the type of object depending on the requirement of your
application.

Single Call

Single Call objects service one and only one request coming in. Single Call objects are
useful in scenarios where the objects are required to do a finite amount of work. Single
Call objects are usually not required to store state information, and they cannot hold
state information between method calls.

Singleton Objects

Singleton objects are those objects that service multiple clients, and hence share data
by storing state information between client invocations. They are useful in cases in
which data needs to be shared explicitly between clients, and also in which the
overhead of creating and maintaining objects is substantial.

Client-Activated Objects (CAO)

 Client-activated objects (CAO) are server-side objects that are activated upon

request from the client.

 When the client submits a request for a server object using a "new" operator, an

activation request message is sent to the remote application.

 The server then creates an instance of the requested class, and returns

an ObjRef back to the client application that invoked it.

 A proxy is then created on the client side using the ObjRef. The client's method

calls will be executed on the proxy.

REMOTE OBJECTS

 Any object outside the application domain of the caller should be considered

remote, even if the objects are executing on the same machine.

 Inside the application domain, all objects are passed by reference while

primitive data types are passed by value.

 Any object can be changed into a remote object by deriving it from

MarshalByRefObject.

 When a client activates a remote object, it receives a proxy to the remote object.

 All operations on this proxy are appropriately indirected to enable the remoting

infrastructure to intercept and forward the calls appropriately.

PROXY OBJECTS

 Proxy objects are created when a client activates a remote object.

 The proxy object acts as a representative of the remote object and ensures that

all calls made on the proxy are forwarded to the correct remote object instance.

 A remote object is registered in an application domain on a remote machine.

 The object is marshaled to produce an ObjRef.

 The ObjRef contains all the information required to locate and access the

remote object from anywhere on the network.

 This information includes the strong name of the class, the class's hierarchy (its

parents), the names of all the interfaces the class implements, the object URI,

and details of all available channels that have been registered.

 The remoting framework uses the object URI to retrieve the ObjRef instance

created for the remote object when it receives a request for that object.

 A client activates a remote object by calling new or one of the Activator

functions like CreateInstance.

15. Write about the enterprise services?

ENTERPRISE SERVICES

 Enterprise services are SAP's term for services that have the proper scope to

play a productive role in automating business processes

inenterprise computing. The scope of an enterprise services is important

because if too much functionality is included in a service, it becomes

complicated to reuse.

 COM (Component Object Model) provides one way to write component-based

applications.

 It is well known that the plumbing work required to write COM components is

significant and repetitive. COM+ is not so much about a new version of COM;

rather, COM+ provides a services infrastructure for components.

 Components are built and then installed in COM+ applications in order to build

scalable server applications that achieve high throughput with ease of

deployment.

 Services components in .NET are able to use COM+ services such as declarative

and distributed transactions, role based security, object pooling messaging. To

access these services your class needs to derive from the class

System.EnterpriseServices.ServicedComponent, adorn your class and

assemblies with relevant attributes, and configure your application by

registering your serviced components with the COM+ catalog.

 The overall landscape of accessing and using COM+ services within .NET goes

by the name .NET Enterprise Services.

 Many of these services can be provided without the need to derive from a

ServicedComponent though the use of Spring's Aspect-Oriented Programming

functionality.

 By using Spring's ServicedComponentExporter, EnterpriseServicesExporter and

ServicedComponentFactory you can easily create and consume serviced

components without having your class inherit from ServicedComponent and

automate the manual deployment process that involves strongly signing your

assembly and using the regsvcs utility.

Server Side

 Spring.Enterprise.ServicedComponentExporter is responsible for exporting a

single component and making sure that it derives from ServicedComponent

class.

 It also allows you to specify class-level and method-level attributes for the

component in order to define things such as transactional behavior, queuing,

etc.

 Spring.Enterprise.EnterpriseServicesExporter corresponds to a COM+

application, and it allows you to specify list of components that should be

included in the application, as well as the application name and other

assembly-level attributes.

16. Write about interoperability in .NET?

(OR)

Write about Interoperability of COM components with .NET

INTEROPERABILITY IN .NET

 The .NET CLR enables interoperability by hiding the complexity associated with

calls between managed and unmanaged code.

 The runtime automatically generates code to translate calls between the two

environments.

 .NET manages the following aspects of interoperability between managed and

unmanaged code:

Object binding
Both early and late bound interfaces are supported.

Data marshaling and translation
Data type conversion is handled between managed and unmanaged data types.

Object lifetime management

Object references are managed to ensure that objects are either released or marked
for garbage collection.

Object identity
COM object identity rules are enforced.

Exception and error handling
The runtime translates COM HRESULT values to .NET exceptions and vice versa.

The important goals of .NET during its development was to promote interoperability

with existing technologies. .NET interoperability comes in three types:

 Interoperability of .NET code with COM components (called as COM interop)

 Interoperability of COM components with .NET (called .NET interop)

 Interoperability of .NET code with Win32 DLLs (called P/Invoke)

 .NET runtime allows us to use legacy COM code from .NET components. We can

call it backward compatibility.

 In the same way, .NET runtime also provides us forward compatibility, means

accessing .NET components from COM components.

Differences Between .NET Framework and COM Framework :

 The .NET framework object model and its workings are different from

Component Object Model (COM) and its workings. For example, clients of .NET

components don't have to worry about the lifetime of the object. Common

Language Runtime (CLR) manages things for them. In contrast, clients of COM

objects must take care of the lifetime of the object.

 Similarly, .NET objects live in the memory space that is managed by CLR. CLR

can move objects around in the memory for performance reasons and update

the references of objects accordingly, but COM object clients have the actual

address of the object and depend on the object to stay on the same memory

location.

 Similarly, .NET runtime provides many new features and constructs to

managed components. For example, .NET components can have parameterized

constructors, functions of the components can have accessibility attributes (like

public, protected, internal, and others) associated with them, and components

can also have static methods. Apart from these features, there are many others.

These include ones that are not accessible to COM clients because standard

implementation of COM does not recognize these features. Therefore .NET

runtime must put something in between the two, .NET server and COM client,

to act as mediator.Interoperability of .NET code with COM components (called

as COM interop)

A .NET component in C# named CManagedServer. This component is in the

ManagedServer assembly. Client side, I have created a Visual Basic (VB) 6.0-based

client that uses the services of our managed server.

Fig Interoperability of COM components with .NET

 Components written in .NET are managed whereas components written using

COM are unmanaged.

 Therefore, the first challenge to overcome is, to bridge these two models.

 Each model has its own way of memory allocation, object lifetime management

and parameter passing convention that to bridge these two models require the

usage of an intermediary that handles all these differences.

 Having an intermediary is important because we do not want applications

writing this code for each application that wants to interop with COM

components.

 The .NET developers were aware of this and thus gave an intermediary called as

the Runtime Callable Wrapper (RCW).

 The RCW takes care of all the intricacies of communicating between the two

platforms. The following figure shows the role of the RCW.

Fig 1 RCW

Runtime Callable Wrapper(RCW)

 The main job of the RCW is to hide all the differences between the two worlds

and as such is an object that is created from the managed heap.

 Only one instance of the RCW is ever created, irrespective of how many .NET

clients access it.

 Once a .NET client object wants to instantiate a COM client, the RCW

intervenes and creates the object on your behalf and then manages the lifetime

of the COM object. COM objects are reference counted.

 This means that each client accessing the COM client will increase its reference

count by 1 and each release of the reference decreases its reference count by 1.

 When the reference count becomes 0, the COM client is released.

 This counting happens by calling the Add and Release methods of the

IUnknown interface, an interface that all COM objects may implement.

 All these intricacies are taken over by the RCW. It is important to remember

that .NET is a garbage collected environment.

 The RCW will be collected when the last client holding a reference to the COM

object releases the reference.

 At this point, the reference count on the COM object becomes 0 and will thus be

collected by the operating system while the RCW will be garbage collected by

the .NET runtime.

17. Write about the GUI?

GUI

A graphical user interface (GUI) is a human-computer interface (i.e., a way for humans

to interact with computers) that uses windows, icons and menus and which can be

manipulated by a mouse (and often to a limited extent by a keyboard as well).

Visual Studio .NET on a Windows platform gives you a multitude of classes to easily

create typical Windows GUI applications

Although it is possible to create windows applications purely in a textual environment,

we will instead make use of the Visual Studio .NET interface which lets us graphically

drag and drop to determine the layout of our program. The .NET environment will then

generate the necessary code for us to perform the layout.

To create a Windows Forms Application, start Visual Studio .NET and create a new

Visual C# Project. Make sure you select a Windows Application as the template.

You will be presented with a blank form. This document assumes that you have the

Toolbox pane visible on the left of the screen and it is set to Windows Forms. This

pane contains common controls which make up the elements on the form. The layout

is shown below:

A control is a component with a visual representation. The Control class in the

System.Windows.Forms namespace is the base class for the graphical objects on the

screen. All controls are derived from the base control. Examples of controls include:

In this document we will only discuss a few controls: Buttons, Labels, TextBox,

ProgressBar, and PictureBox. A Button is just like it sounds, a button we can press

and when it is pressed some code is invoked. A Label is a way to output some text on

the form. A TextBox can be used to output data and provide a way for the user to

enter text to the program (although a label is better for data that is purely output

only). A ProgressBar displays a graphical bar of progress for some slow event. Finally,

a PictureBox is used to load and display an image

To add controls to the form, select the control you want from the Toolbox on the left.

Then click and drag in the form window in the location you want the control to go. If

you select the Pointer tool, you can select existing items on the form and move them

elsewhere. You can also click and resize the control on the form. Try dragging a button

onto the form:

Click the button on the form and change its Name property to “buttonEvenOdd”. This

is setting the name of the variable used to reference the button object from its default

of “Button1”. Also change the button’s text property to “Even or Odd”. You should see

the change to the text field take place on the form.

In the same fashion as the button, add a label to the form and name it “labelResult”

and set its Text field to “Enter data”.

You can look at the code at any time by right-clicking on the “Form1.cs” name

and select “View Code” to see the C# code: Look figure below.

Thus GUI has been discussed.

UNIT-2

CONCEPT OF OOPS

At the center of C# is object-oriented programming (OOP). The object-oriented methodology

is inseparable from C#, and all C# programs are to at least some extent object oriented. C#’s

basic unit of encapsulation is the class. A class defines the form of an object. It specifies both the

data and the code that will operate on that data. C# uses a class specification to construct objects.

Objects are instances of a class. Thus, a class is essentially a set of plans that specify how to

build an object. Collectively, the code and data that constitute a class are called its members.

Method is C#’s term for a subroutine. Thus, the methods of a class contain code that acts on the

fields defined by that class.

To support the principles of object-oriented programming, all OOP languages, including C#,

have three traits in common: encapsulation, polymorphism, and inheritance.

2.1.1 Object oriented programming

 Encapsulation

Encapsulation is a programming mechanism that binds together code and the data. In an

objectoriented language, code and data can be bound together in such a way that an

object is created.

 Polymorphism

Concept of polymorphism is often expressed by the phrase “one interface, multiple

methods.” This means that it is possible to design a generic interface to a group of related

activities.

 Inheritance

Inheritance is the process by which one object can acquire the properties of another

object.

1. Write about the Types and Variables

DATA TYPES

C# contains two general categories of built-in data types: value types and reference types. For

a value type, a variable holds an actual value, such 3.1416 or 212. For a reference type, a

variable holds a reference to the value. The most commonly used reference type is the class. The

value types are described here.

The Boolean Type

Boolean types are declared using the keyword, bool. They have two values: true or false. In

other languages, such as C and C++, boolean conditions can be satisfied where 0 means false and

anything else means true. However, in C# the only values that satisfy a boolean condition is true

and false, which are official keywords. Listing 2-1 shows one of many ways that boolean types

can be used in a program.

Displaying Boolean Values: Boolean.cs

using System;

class Booleans

{ public static void Main()

 { bool content = true;

 bool noContent = false;

 Console.WriteLine("It is {0} that C# Station provides C# programming language content.",

content);

 Console.WriteLine("The statement above is not {0}.", noContent);

 }

}

In the above example the boolean values are written to the console as a part of a sentence. The

only legal values for the bool type are either true or false, as shown by the assignment of true to

content and false to noContent. When run, this program produces the following output:

 It is True that C# Station provides C# programming language content.

 The statement above is not False.

Integral Types

In C#, an integral is a category of types. For anyone confused because the word Integral

sounds like a mathematical term, from the perspective of C# programming, these are actually

defined as Integral types in the C# programming language specification. They are whole

numbers, either signed or unsigned, and the char type. The char type is a Unicode character, as

defined by the Unicode Standard. For more information, visit The Unicode Home Page. table 2-1

shows the integral types, their size, and range.

Table 2.1 Integral types

Integral types are well suited for those operations involving whole number calculations.

The char type is the exception, representing a single Unicode character. As you can see from the

table above, you have a wide range of options to choose from, depending on your requirements.

Floating Point and Decimal Types

A C# floating point type is either a float or double. They are used any time you need to

represent a real number, as defined by IEEE 754. For more information on IEEE 754, visit the

IEEE Web Site. Decimal types should be used when representing financial or money values.

table 2-2 shows the floating point and decimal types, their size, precision, and range.

Table 2.2 floating point types

Floating point types are used when you need to perform operations requiring fractional

representations. However, for financial calculations, the decimal type is the best choice because

you can avoid rounding errors.

// Find the radius of a circle given its area.

using System;

class FindRadius {

static void Main() {

Double r;

Double area;

area = 10.0;

r = Math.Sqrt(area / 3.1416);

Console.WriteLine("Radius is " + r);

}}

The output from the program is shown here:

Radius is 1.78412203012729

The string Type

A string is a sequence of text characters. You typically create a string with a string literal,

enclosed in quotes: "This is an example of a string." You've seen strings being used in Lesson 1,

where we used the Console.WriteLine method to send output to the console. Some characters

aren't printable, but you still need to use them in strings. Therefore, C# has a special syntax

where characters can be escaped to represent non-printable characters. For example, it is

common to use newlines in text, which is represented by the '\n' char. The backslash, '\',

represents the escape. When preceded by the escape character, the 'n' is no longer interpreted as

an alphabetical character, but now represents a newline.

We have to escape that too by typing two backslashes, as in '\\'. table 2-3 shows a list of

common escape sequences.

Table 2.3 String types

Another useful feature of C# strings is the verbatim literal, which is a string with a @

symbol prefix, as in @"Some string". Verbatim literals make escape sequences translate as

normal characters to enhance readability. To appreciate the value of verbatim literals, consider a

path statement such as "c:\\topdir\\subdir\\subdir\\myapp.exe". As you can see, the backslashes

are escaped, causing the string to be less readable. You can improve the string with a verbatim

literal, like this: @"c:\topdir\subdir\subdir\myapp.exe".

VARIABLES

A variable is nothing but a name given to a storage area that our programs can manipulate. Each

variable in C# has a specific type, which determines the size and layout of the variable's

memory; the range of values that can be stored within that memory; and the set of operations that

can be applied to the variable.The basic value types provided in C# can be categorized as:

C# also allows defining other value types of variable like enum and reference types of variables

like class, which we will cover in subsequent chapters. For this chapter, let us study only basic

variable types.

Variable Definition in C#

Syntax for variable definition in C# is:

<data_type> <variable_list>;

Here, data_type must be a valid C# data type including char, int, float, double, or any user-

defined data type, etc., and variable_list may consist of one or more identifier names separated

by commas.

Some valid variable definitions are shown here:

int i, j, k;

char c, ch;

float f, salary;

double d;

You can initialize a variable at the time of definition as:

int i = 100;

Variable Initialization in C#

Variables are initialized (assigned a value) with an equal sign followed by a constant expression.

The general form of initialization is:

variable_name = value;

Variables can be initialized (assigned an initial value) in their declaration. The initializer consists

of an equal sign followed by a constant expression as:

<data_type> <variable_name> = value;

Some examples are:

int d = 3, f = 5; /* initializing d and f. */

byte z = 22; /* initializes z. */

double pi = 3.14159; /* declares an approximation of pi. */

char x = 'x'; /* the variable x has the value 'x'. */

It is a good programming practice to initialize variables properly, otherwise sometimes program

would produce unexpected result.

Try the following example which makes use of various types of variables:

namespace VariableDefinition

{

 class Program

 {

 static void Main(string[] args)

 {

 short a;

 int b ;

 double c;

 /* actual initialization */

 a = 10;

 b = 20;

 c = a + b;

 Console.WriteLine("a = {0}, b = {1}, c = {2}", a, b, c);

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

a = 10, b = 20, c = 30

Accepting Values from User

The Console class in the System namespace provides a function ReadLine() for accepting input

from the user and store it into a variable.

For example,

int num;

num = Convert.ToInt32(Console.ReadLine());

The function Convert.ToInt32() converts the data entered by the user to int data type, because

Console.ReadLine() accepts the data in string format.

Lvalues and Rvalues in C#:

There are two kinds of expressions in C#:

lvalue: An expression that is an lvalue may appear as either the left-hand or right-hand side of an

assignment.

rvalue: An expression that is an rvalue may appear on the right- but not left-hand side of an

assignment.

Variables are lvalues and so may appear on the left-hand side of an assignment. Numeric literals

are rvalues and so may not be assigned and can not appear on the left-hand side. Following is a

valid statement:

int g = 20;

But following is not a valid statement and would generate compile-time error:

10 = 20;

2.Write about operators in c#

Operators in C#

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. C# is rich in built-in operators and provides the following type of operators:

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Misc Operators

This tutorial will explain the arithmetic, relational, logical, bitwise, assignment and other

operators one by one.

Arithmetic Operators

Following table shows all the arithmetic operators supported by C#. Assume variable A holds 10

and variable B holds 20 then:

EXAMPLE

using System;

namespace OperatorsAppl

{

 class Program

 {

 static void Main(string[] args)

 {

 int a = 21;

 int b = 10;

 int c;

 c = a + b;

 Console.WriteLine("Line 1 - Value of c is {0}", c);

 c = a - b;

 Console.WriteLine("Line 2 - Value of c is {0}", c);

 c = a * b;

 Console.WriteLine("Line 3 - Value of c is {0}", c);

 c = a / b;

 Console.WriteLine("Line 4 - Value of c is {0}", c);

 c = a % b;

 Console.WriteLine("Line 5 - Value of c is {0}", c);

 c = a++;

 Console.WriteLine("Line 6 - Value of c is {0}", c);

 c = a--;

 Console.WriteLine("Line 7 - Value of c is {0}", c);

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

OUTPUT

Line 1 - Value of c is 31

Line 2 - Value of c is 11

Line 3 - Value of c is 210

Line 4 - Value of c is 2

Line 5 - Value of c is 1

Line 6 - Value of c is 21

Line 7 - Value of c is 22

Relational Operators

Following table shows all the relational operators supported by C#. Assume variable A holds 10

and variable B holds 20, then:

EXAMPLE

using System;

class Program

{

 static void Main(string[] args)

 {

 int a = 21;

 int b = 10;

 if (a == b)

 {

 Console.WriteLine("Line 1 - a is equal to b");

 }

 else

 {

 Console.WriteLine("Line 1 - a is not equal to b");

 }

 if (a < b)

 {

 Console.WriteLine("Line 2 - a is less than b");

 }

 else

 {

 Console.WriteLine("Line 2 - a is not less than b");

 }

 if (a > b)

 {

 Console.WriteLine("Line 3 - a is greater than b");

 }

 else

 {

 Console.WriteLine("Line 3 - a is not greater than b");

 }

 /* Lets change value of a and b */

 a = 5;

 b = 20;

 if (a <= b)

 {

 Console.WriteLine("Line 4 - a is either less than or equal to b");

 }

 if (b >= a)

 {

 Console.WriteLine("Line 5-b is either greater than or equal to b");

 }

 }

}

When the above code is compiled and executed, it produces the following result:

OUTPUT

Line 1 - a is not equal to b

Line 2 - a is not less than b

Line 3 - a is greater than b

Line 4 - a is either less than or equal to b

Line 5 - b is either greater than or equal to b

Logical Operators

Following table shows all the logical operators supported by C#. Assume variable A holds

Boolean value true and variable B holds Boolean value false, then:

EXAMPLE

using System;

namespace OperatorsAppl

{

 class Program

 {

 static void Main(string[] args)

 {

 bool a = true;

 bool b = true;

 if (a && b)

 {

 Console.WriteLine("Line 1 - Condition is true");

 }

 if (a || b)

 {

 Console.WriteLine("Line 2 - Condition is true");

 }

 /* lets change the value of a and b */

 a = false;

 b = true;

 if (a && b)

 {

 Console.WriteLine("Line 3 - Condition is true");

 }

 else

 {

 Console.WriteLine("Line 3 - Condition is not true");

 }

 if (!(a && b))

 {

 Console.WriteLine("Line 4 - Condition is true");

 }

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

OUTPUT

Line 1 - Condition is true

Line 2 - Condition is true

Line 3 - Condition is not true

Line 4 - Condition is true

Bitwise Operators

Bitwise operator works on bits and perform bit by bit operation. The truth tables for &, |, and ^

are as follows:

Assume if A = 60; and B = 13; now in binary format they will be as follows:

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

The Bitwise operators supported by C# are listed in the following table. Assume variable A holds

60 and variable B holds 13 then:

EXAMPLE

using System;

namespace OperatorsAppl

{

 class Program

 {

 static void Main(string[] args)

 {

 int a = 60; /* 60 = 0011 1100 */

 int b = 13; /* 13 = 0000 1101 */

 int c = 0;

 c = a & b; /* 12 = 0000 1100 */

 Console.WriteLine("Line 1 - Value of c is {0}", c);

 c = a | b; /* 61 = 0011 1101 */

 Console.WriteLine("Line 2 - Value of c is {0}", c);

 c = a ^ b; /* 49 = 0011 0001 */

 Console.WriteLine("Line 3 - Value of c is {0}", c);

 c = ~a; /*-61 = 1100 0011 */

 Console.WriteLine("Line 4 - Value of c is {0}", c);

 c = a << 2; /* 240 = 1111 0000 */

 Console.WriteLine("Line 5 - Value of c is {0}", c);

 c = a >> 2; /* 15 = 0000 1111 */

 Console.WriteLine("Line 6 - Value of c is {0}", c);

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

OUTPUT

Line 1 - Value of c is 12

Line 2 - Value of c is 61

Line 3 - Value of c is 49

Line 4 - Value of c is -61

Line 5 - Value of c is 240

Line 6 - Value of c is 15

Assignment Operators

There are following assignment operators supported by C#:

EXAMPLE

using System;

namespace OperatorsAppl

{

 class Program

 {

 static void Main(string[] args)

 {

 int a = 21;

 int c;

 c = a;

 Console.WriteLine("Line 1 - = Value of c = {0}", c);

 c += a;

 Console.WriteLine("Line 2 - += Value of c = {0}", c);

 c -= a;

 Console.WriteLine("Line 3 - -= Value of c = {0}", c);

 c *= a;

 Console.WriteLine("Line 4 - *= Value of c = {0}", c);

 c /= a;

 Console.WriteLine("Line 5 - /= Value of c = {0}", c);

 c = 200;

 c %= a;

 Console.WriteLine("Line 6 - %= Value of c = {0}", c);

 c <<= 2;

 Console.WriteLine("Line 7 - <<= Value of c = {0}", c);

 c >>= 2;

 Console.WriteLine("Line 8 - >>= Value of c = {0}", c);

 c &= 2;

 Console.WriteLine("Line 9 - &= Value of c = {0}", c);

 c ^= 2;

 Console.WriteLine("Line 10 - ^= Value of c = {0}", c);

 c |= 2;

 Console.WriteLine("Line 11 - |= Value of c = {0}", c);

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

OUTPUT

Line 1 - = Value of c = 21

Line 2 - += Value of c = 42

Line 3 - -= Value of c = 21

Line 4 - *= Value of c = 441

Line 5 - /= Value of c = 21

Line 6 - %= Value of c = 11

Line 7 - <<= Value of c = 44

Line 8 - >>= Value of c = 11

Line 9 - &= Value of c = 2

Line 10 - ^= Value of c = 0

Line 11 - |= Value of c = 2

Misc Operators

There are few other important operators including sizeof, typeof and ? : supported by C#.

EXAMPLE

using System;

namespace OperatorsAppl

{

 class Program

 {

 static void Main(string[] args)

 {

 /* example of sizeof operator */

 Console.WriteLine("The size of int is {0}", sizeof(int));

 Console.WriteLine("The size of short is {0}", sizeof(short));

 Console.WriteLine("The size of double is {0}", sizeof(double));

 /* example of ternary operator */

 int a, b;

 a = 10;

 b = (a == 1) ? 20 : 30;

 Console.WriteLine("Value of b is {0}", b);

 b = (a == 10) ? 20 : 30;

 Console.WriteLine("Value of b is {0}", b);

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

OUTPUT

The size of int is 4

The size of short is 2

The size of double is 8

Value of b is 30

Value of b is 20

3. What are the Control Statements in C#?Explain with appropriate examples.

(OR)

Explain about the Control Statements with example

Control Statements –Selection

There are three categories of program control statements: selection statements, which are the

if and the switch iteration statements, which consist of the for, while, do-while, and foreach

loops; and jump statements, which include break, continue, goto, return, and throw

 If Statement

 Switch Statement

 Break Statement

 Goto Statement

The if Statement

An if statement allows you to take different paths of logic, depending on a given condition.

When the condition evaluates to a boolean true, a block of code for that true condition will

execute. You have the option of a single if statement, multiple else if statements, and an optional

else statement.

using System;

class IfSelect

{ public static void Main()

 { string myInput;

 int myInt;

 Console.Write("Please enter a number: ");

 myInput = Console.ReadLine();

 myInt = Int32.Parse(myInput);

 // Single Decision and Action with braces

if (myInt > 0)

 { Console.WriteLine("Your number {0} is greater than zero.", myInt); }

 // Single Decision and Action without brackets

 if (myInt < 0)

 Console.WriteLine("Your number {0} is less than zero.", myInt);

 // Either/Or Decision

 if (myInt != 0)

 { Console.WriteLine("Your number {0} is not equal to zero.", myInt); } else

 { Console.WriteLine("Your number {0} is equal to zero.", myInt);

 } // Multiple Case Decision

 if (myInt < 0 || myInt == 0)

 { Console.WriteLine("Your number {0} is less than or equal to zero.", myInt);

 } else if (myInt > 0 && myInt <= 10)

 { Console.WriteLine("Your number {0} is in the range from 1 to 10.", myInt);

 } else if (myInt > 10 && myInt <= 20)

 { Console.WriteLine("Your number {0} is in the range from 11 to 20.", myInt);

 } else if (myInt > 20 && myInt <= 30)

 { Console.WriteLine("Your number {0} is in the range from 21 to 30.", myInt);

 } else

 { Console.WriteLine("Your number {0} is greater than 30.", myInt);

 }

 }

}

The switch Statement

Another form of selection statement is the switch statement, which executes a set of logic

depending on the value of a given parameter. The types of the values a switch statement operates

on can be booleans, enums, integral types, and strings.

using System;

class SwitchSelect

{

 public static void Main()

 {

 string myInput;

 int myInt;

 begin:

 Console.Write("Please enter a number between 1 and 3: ");

 myInput = Console.ReadLine();

 myInt = Int32.Parse(myInput);

 // switch with integer type

 switch (myInt)

 { case 1:

 Console.WriteLine("Your number is {0}.", myInt);

 break;

case 2: Console.WriteLine("Your number is {0}.", myInt);

 break;

 case 3:

 Console.WriteLine("Your number is {0}.", myInt);

 break;

 default:

 Console.WriteLine("Your number {0} is not between 1 and 3.", myInt);

 break; }

 decide:

 Console.Write("Type \"continue\" to go on or \"quit\" to stop: ");

 myInput = Console.ReadLine();

 // switch with string type

 switch (myInput)

 { case "continue":

 goto begin;

 case "quit":

 Console.WriteLine("Bye.");

 break;

 default:

 Console.WriteLine("Your input {0} is incorrect.", myInput);

 goto decide;

 } } }

2.1.5 Control Statements - Loops

• While loop.

• Do loop.

• For loop.

• Foreach loop.

The while Loop

A while loop will check a condition and then continues to execute a block of code as long

as the condition evaluates to a boolean value of true. Its syntax is as follows: while (<boolean

expression>) { <statements> }. The statements can be any valid C# statements. The boolean

expression is evaluated before any code in the following block has executed. When the boolean

expression evaluates to true, the statements will execute. Once the statements have executed,

control returns to the beginning of the while loop to check the boolean expression again.

When the boolean expression evaluates to false, the while loop statements are skipped and

execution begins after the closing brace of that block of code. Before entering the loop, ensure

that variables evaluated in the loop condition are set to an initial state. During execution, make

sure you update variables associated with the boolean expression so that the loop will end when

you want it to.

using System;

class WhileLoop

{

 public static void Main()

 { int myInt = 0;

 while (myInt < 10)

 { Console.Write("{0} ", myInt);

 myInt++;

 } Console.WriteLine();

 } }

The do Loop

A do loop is similar to the while loop, except that it checks its condition at the end of the

loop. This means that the do loop is guaranteed to execute at least one time. On the other hand, a

while loop evaluates its boolean expression at the beginning and there is generally no guarantee

that the statements inside the loop will be executed, unless you program the code to explicitly do

so. One reason you may want to use a do loop instead of a while loop is to present a message.

using System;

class DoLoop

{ public static void Main()

 { string myChoice;

 do

 { // Print A Menu

 Console.WriteLine("My Address Book\n");

 Console.WriteLine("A - Add New Address");

 Console.WriteLine("D - Delete Address");

 Console.WriteLine("M - Modify Address");

 Console.WriteLine("V - View Addresses");

 Console.WriteLine("Q - Quit\n");

 Console.WriteLine("Choice (A,D,M,V,or Q): ");

 // Retrieve the user's choice

 myChoice = Console.ReadLine();

 // Make a decision based on the user's choice

 switch(myChoice)

 { case "A":

 case "a":

 Console.WriteLine("You wish to add an address.");

 break;

 case "D":

 case "d":

 Console.WriteLine("You wish to delete an address.");

 break;

 case "M":

 case "m":

 Console.WriteLine("You wish to modify an address.");

 break;

 case "V":

 case "v":

 Console.WriteLine("You wish to view the address list.");

 break;

 case "Q":case "q":

 Console.WriteLine("Bye.");

 break;

 default:

 Console.WriteLine("{0} is not a valid choice", myChoice);

 break;

 }

 // Pause to allow the user to see the results

 Console.Write("press Enter key to continue...");

 Console.ReadLine();

 Console.WriteLine();

 } while (myChoice != "Q" && myChoice != "q"); // Keep going until the user wants to

quit

 } }

The for Loop

A for loop works like a while loop, except that the syntax of the for loop includes

initialization and condition modification. for loops are appropriate when you know exactly how

many times you want to perform the statements within the loop. The contents within the for loop

parentheses hold three sections separated by semicolons (<initializer list>; <boolean

expression>; <iterator list>) { <statements> }. The initializer list is a comma separated list of

expressions. These expressions are evaluated only once during the lifetime of the for loop. This

is a one-time operation, before loop execution. This section is commonly used to initialize an

integer to be used as a counter.

Once the initializer list has been evaluated, the for loop gives control to its second section,

the boolean expression. There is only one boolean expression, but it can be as complicated as

you like as long as the result evaluates to true or false. The boolean expression is commonly used

to verify the status of a counter variable.

When the boolean expression evaluates to true, the statements within the curly braces of the

for loop are executed. After executing for loop statements, control moves to the top of loop and

executes the iterator list, which is normally used to increment or decrement a counter. The

iterator list can contain a comma separated list of statements, but is generally only one statement.

using System;

 class ForLoop

{

 public static void Main()

 { for (int i=0; i < 20; i++)

 { if (i == 10)

 break;

 if (i % 2 == 0)

 continue;

 Console.Write("{0} ", i);

 } Console.WriteLine();

 }

}

The foreach Loop

A foreach loop is used to iterate through the items in a list. It operates on arrays or

collections such as ArrayList, which can be found in the System.Collections namespace. The

syntax of a foreach loop is foreach (<type> <iteration variable> in <list>) { <statements> }. The

type is the type of item contained in the list. For example, if the type of the list was int[] then the

type would be int.

The iteration variable is an identifier that you choose, which could be anything but should be

meaningful. For example, if the list contained an array of people's ages, then a meaningful name

for item name would be age. The in keyword is required.

using System;

class ForEachLoop

{

 public static void Main()

 {

 string[] names = {"Cheryl", "Joe", "Matt", "Robert"};

 foreach (string person in names)

 {

 Console.WriteLine("{0} ", person);

 }

 }

Loop Control Statements:

Loop control statements change execution from its normal sequence. When execution leaves a

scope, all automatic objects that were created in that scope are destroyed.

C# provides the following control statements. Click the following links to check their details.

EXAMPLE OF BREAK

using System;

namespace Loops

{

 class Program

 {

 static void Main(string[] args)

 {

 /* local variable definition */

 int a = 10;

 /* while loop execution */

 while (a < 20)

 {

 Console.WriteLine("value of a: {0}", a);

 a++;

 if (a > 15)

 {

 /* terminate the loop using break statement */

 break;

 }

 }

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

EXAMPLE OF CONTINUE

using System;

namespace Loops

{

 class Program

 {

 static void Main(string[] args)

 {

 /* local variable definition */

 int a = 10;

 /* do loop execution */

 do

 {

 if (a == 15)

 {

 /* skip the iteration */

 a = a + 1;

 continue;

 }

 Console.WriteLine("value of a: {0}", a);

 a++;

 } while (a < 20);

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

GOTO STATEMENT

The goto statement is a jump statement that controls the execution of the program to another

segment of the same program. You create label at anywhere in program then can pass the

execution control via the goto statements.

using System;

namespace goto_statement

{

 class Program

 {

 static void Main(string[] args)

 {

 string name;

 label: //creating label with colon(:)

 Console.WriteLine("Enter your name:");

 name = Console.ReadLine();

 Console.WriteLine("Welcome {0}", name);

 goto label; //jump to label statement

 }

 }

}

note: To terminate the program press Ctrl+C

POLYMORPHISM

 Polymorphism is one of the primary characteristics of Object Oriented Programming.

 “Poly” means “many” and “morph” means “form”.

 Thus polymorphism refers to being able to use many form of a type without regard to the

details.

 Types of Polymorphism

 Compile Time Polymorphism.

 Runtime Polymorphism.

Compile Time Polymorphism

 Compile time Polymorphism also known as Method Overloading.

 Method Overloading means having two or more methods with the same name but with

different parameters.

 It is also called as static polymorphism.

 Which method is to be called is decided at the compile time only.

 In static Polymorphism decision is taken at the Compile time.

EXAMPLE

using System;

namespace PolymorphismApplication

{

 class Printdata

 {

 void print(int i)

 {

 Console.WriteLine("Printing int: {0}", i);

 }

 void print(double f)

 {

 Console.WriteLine("Printing float: {0}" , f);

 }

 void print(string s)

 {

 Console.WriteLine("Printing string: {0}", s);

 }

Void print(int a,float b)

{

 Console.WriteLine("Printing int:{0}" , a);

 Console.WriteLine("Printing float:{0}" , b);

}

 Public static void Main(string[] args)

 {

 Printdata p = new Printdata();

 // Call print to print integer

 p.print(5);

 // Call print to print float

 p.print(500.263);

 // Call print to print string

 p.print("Hello C++");

 p.print(12.12.0);

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Printing int: 5

Printing float: 500.263

Printing int: 12

Printing float: 12.0

Printing string: Hello C++

Runtime Polymorphism

 Run Time Polymorphism also known as Method Overriding.

 Method Overriding means having two or more methods with the same name, same

parameters but with different implementation.

 It is also called as Dynamic Polymorphism.

 In this process, an overridden method is called through reference variable of a superclass;

the determination of the method to be called is based on the object being referred to by

reference variable.

 The parent class uses the same virtual keyword. Every class that overrides the virtual

method will use the override keyword.

EXAMPLE

using System;

class Parent

{

 public virtual void show()

 {

 Console.WriteLine("Parent");

 }

}

class Child : Parent

{

 public override void show()

 {

 Console.WriteLine("Child");

 }

}

class grandchild : Parent

{

 public override void show()

 {

 Console.WriteLine("grandChild");

 }

}

class Test

{

 static void Main()

 {

 Parent p = new Parent();

 Parent c = new Child();

 Parent g = new grandchild();

 c.show();

 p.show();

 g.show();

 Console.ReadLine();

 }

}

Output

Child

Parent

grandChild

INTERFACES

 An interface is defined as a syntactical contract that all the classes inheriting the interface

should follow.

 The interface defines the 'what' part of the syntactical contract and the deriving classes

define the 'how' part of the syntactical contract.

 Interfaces define properties, methods and events, which are the members of the interface.

Interfaces contain only the declaration of the members.

 It is the responsibility of the deriving class to define the members. It often helps in

providing a standard structure that the deriving classes would follow.

Declaring Interfaces

Interfaces are declared using the interface keyword. It is similar to class declaration. Interface

statements are public by default. Following is an example of an interface declaration:

public interface ITransactions

{

 // interface members

 void showTransaction();

 double getAmount();

}

EXAMPLE

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace InterfaceApplication

{

 public interface ITransactions

 {

 // interface members

 void showTransaction();

 double getAmount();

 }

 public class Transaction : ITransactions

 {

 private string tCode;

 private string date;

 private double amount;

 public Transaction()

 {

 tCode = " ";

 date = " ";

 amount = 0.0;

 }

 public Transaction(string c, string d, double a)

 {

 tCode = c;

 date = d;

 amount = a;

 }

 public double getAmount()

 {

 return amount;

 }

 public void showTransaction()

 {

 Console.WriteLine("Transaction: {0}", tCode);

 Console.WriteLine("Date: {0}", date);

 Console.WriteLine("Amount: {0}", getAmount());

 }

 }

 class Tester

 {

 static void Main(string[] args)

 {

 Transaction t1 = new Transaction("001", "8/10/2012", 78900.00);

 Transaction t2 = new Transaction("002", "9/10/2012", 451900.00);

 t1.showTransaction();

 t2.showTransaction();

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Transaction: 001

Date: 8/10/2012

Amount: 78900

Transaction: 002

Date: 9/10/2012

Amount: 451900

HANDLING EXCEPTION

An exception is a problem that arises during the execution of a program. A C# exception is a

response to an exceptional circumstance that arises while a program is running, such as an

attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to another. C# exception

handling is built upon four keywords: try, catch, finally and throw.

 try: A try block identifies a block of code for which particular exceptions will be

activated. It's followed by one or more catch blocks.

 catch: A program catches an exception with an exception handler at the place in a

program where you want to handle the problem. The catch keyword indicates the catching of an

exception.

 finally: The finally block is used to execute a given set of statements, whether an

exception is thrown or not thrown. For example, if you open a file, it must be closed whether an

exception is raised or not.

 throw: A program throws an exception when a problem shows up. This is done using a

throw keyword.

Syntax

Assuming a block will raise and exception, a method catches an exception using a combination

of the try and catch keywords. A try/catch block is placed around the code that might generate an

exception. Code within a try/catch block is referred to as protected code, and the syntax for using

try/catch looks like the following:

try

{

 // statements causing exception

}

catch(ExceptionName e1)

{

 // error handling code

}

catch(ExceptionName e2)

{

 // error handling code

}

catch(ExceptionName eN)

{

 // error handling code

}

finally

{

 // statements to be executed

}

You can list down multiple catch statements to catch different type of exceptions in case your try

block raises more than one exception in different situations.

Exception Classes in C#

C# exceptions are represented by classes. The exception classes in C# are mainly directly or

indirectly derived from the System.Exception class. Some of the exception classes derived from

the System.Exception class are

the System.ApplicationException and System.SystemException classes.

The System.ApplicationException class supports exceptions generated by application

programs. So the exceptions defined by the programmers should derive from this class.

The System.SystemException class is the base class for all predefined system exception.

The following table provides some of the predefined exception classes derived from the

Sytem.SystemException class:

Exception Class Description

System.IO.IOException Handles I/O errors.

System.IndexOutOfRangeException
Handles errors generated when a method

refers to an array index out of range.

System.ArrayTypeMismatchException
Handles errors generated when type is

mismatched with the array type.

System.NullReferenceException
Handles errors generated from deferencing a

null object.

System.DivideByZeroException
Handles errors generated from dividing a

dividend with zero.

System.InvalidCastException Handles errors generated during typecasting.

System.OutOfMemoryException
Handles errors generated from insufficient

free memory.

System.StackOverflowException
Handles errors generated from stack

overflow.

Handling Exceptions

C# provides a structured solution to the exception handling problems in the form of try and catch

blocks. Using these blocks the core program statements are separated from the error-handling

statements.

These error handling blocks are implemented using the try, catch and finally keywords.

EXAMPLE

using System;

namespace ErrorHandlingApplication

{

 class DivNumbers

 {

 int result;

 DivNumbers()

 {

 result = 0;

 }

 public void division(int num1, int num2)

 {

 try

 {

 result = num1 / num2;

 }

 catch (DivideByZeroException e)

 {

 Console.WriteLine("Exception caught: {0}", e);

 }

 finally

 {

 Console.WriteLine("Result: {0}", result);

 }

 }

 static void Main(string[] args)

 {

 DivNumbers d = new DivNumbers();

 d.division(25, 0);

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Exception caught: System.DivideByZeroException: Attempted to divide by zero.

at ...

Result: 0

DELEGATES

C# delegates are similar to pointers to functions, in C or C++. A delegate is a reference type

variable that holds the reference to a method. The reference can be changed at runtime.

Delegates are especially used for implementing events and the call-back methods. All delegates

are implicitly derived from the System.Delegate class.

Declaring Delegates

Delegate declaration determines the methods that can be referenced by the delegate. A delegate

can refer to a method, which have the same signature as that of the delegate.

For example, consider a delegate:

public delegate int MyDelegate (string s);

The preceding delegate can be used to reference any method that has a single string parameter

and returns an int type variable.

Syntax for delegate declaration is:

delegate <return type> <delegate-name> <parameter list>

Instantiating Delegates

Once a delegate type has been declared, a delegate object must be created with the new keyword

and be associated with a particular method. When creating a delegate, the argument passed to

the newexpression is written like a method call, but without the arguments to the method. For

example:

public delegate void printString(string s);

...

printString ps1 = new printString(WriteToScreen);

printString ps2 = new printString(WriteToFile);

Following example demonstrates declaration, instantiation and use of a delegate that can be used

to reference methods that take an integer parameter and returns an integer value.

using System;

delegate int NumberChanger(int n);

namespace DelegateAppl

{

 class TestDelegate

 {

 static int num = 10;

 public static int AddNum(int p)

 {

 num += p;

 return num;

 }

 public static int MultNum(int q)

 {

 num *= q;

 return num;

 }

 public static int getNum()

 {

 return num;

 }

 static void Main(string[] args)

 {

 //create delegate instances

 NumberChanger nc1 = new NumberChanger(AddNum);

 NumberChanger nc2 = new NumberChanger(MultNum);

 //calling the methods using the delegate objects

 nc1(25);

 Console.WriteLine("Value of Num: {0}", getNum());

 nc2(5);

 Console.WriteLine("Value of Num: {0}", getNum());

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Value of Num: 35

Value of Num: 175

1. INDEXERS AND PROPERTIES

PROPERTIES

Properties are named members of classes, structures, and interfaces. Member variables or

methods in a class or structures are called Fields. Properties are an extension of fields and are

accessed using the same syntax. They use accessors through which the values of the private

fields can be read, written or manipulated.

Properties do not name the storage locations. Instead, they have accessors that read, write, or

compute their values.

For example, let us have a class named Student, with private fields for age, name and code. We

cannot directly access these fields from outside the class scope, but we can have properties for

accessing these private fields.

The accessor of a property contains the executable statements that helps in getting (reading or

computing) or setting (writing) the property. The accessor declarations can contain a get

accessor, a set accessor, or both.

General form of property

Type name

{

 Get

 {

 }

 Set

 {

 }

}

Type-specifies the data type of the property

Name specifies the property name

Get-gets the value of the variable

Set-sets the value of the variable and it has implicit variable called value that contains the value

to be assigned to the property.

EXAMPLE

using System;

class simpleprop

{

 private int prop;

 public simpleprop()

 {

 prop = 0;

 }

 public int myprop

 {

 get

 {

 return prop;

 }

 set

 {

 if (value >= 0)

 {

 prop = value;

 }

 }

 }

}

 class propertydemo

 {

 public static void Main()

 {

 simpleprop ob=new simpleprop();

 Console.WriteLine("ORIGINAL VALUE OF OB.MYPROP"+ob.myprop);

 ob.myprop=100;

 Console.WriteLine("value of prop"+ob.myprop);

 ob.myprop=-10;

 Console.WriteLine("value of prop after assigning negative value -10"+ob.myprop);

 }

 }

OUTPUT

ORIGINAL VALUE OF OB.MYPROP:0

Value of prop: 100

Value of prop after assigning negative value -10: 100

INDEXERS

An indexer allows an object to be indexed like an array. When you define an indexer for a class,

this class behaves like a virtual array. You can then access the instance of this class using the

array access operator ([]).

A one dimensional indexer has the following syntax:

element-type this[int index]

{

 // The get accessor.

 get

 {

 // return the value specified by index

 }

 // The set accessor.

 set

 {

 // set the value specified by index

 }

}

Here, element-type is the base type of the indexer. Thus, each element accessed by the indexer

will be of type element-type. The element type corresponds to the base type of an array. The

parameter index receives the index of the element being accessed. Except that it does not have a

return type or parameter declarations. The accessors are automatically called when the indexer is

used, and both accessors receive index as a parameter. If the indexer is on the left side of an

assignment statement, then the set accessor is called, and the element specified by index must be

set. Otherwise, the get accessor is called, and the value associated with index must be returned.

The set accessor also receives an implicit parameter called value, which contains the value being

assigned to the specified index.

using System;

namespace IndexerApplication

{

 class IndexedNames

 {

 private string[] namelist = new string[size];

 static public int size = 10;

 public IndexedNames()

 {

 for (int i = 0; i < size; i++)

 namelist[i] = "N. A.";

 }

 public string this[int index]

 {

 get

 {

 string tmp;

 if (index >= 0 && index <= size - 1)

 {

 tmp = namelist[index];

 }

 else

 {

 tmp = "";

 }

 return (tmp);

 }

 set

 {

 if (index >= 0 && index <= size - 1)

 {

 namelist[index] = value;

 }

 }

 }

 static void Main(string[] args)

 {

 IndexedNames names = new IndexedNames();

 names[0] = "Zara";

 names[1] = "Riz";

 names[2] = "Nuha";

 names[3] = "Asif";

 names[4] = "Davinder";

 names[5] = "Sunil";

 names[6] = "Rubic";

 for (int i = 0; i < IndexedNames.size; i++)

 {

 Console.WriteLine(names[i]);

 }

 Console.ReadKey();

 }

 }

}

OUTPUT

Zara

Riz

Nuha

Asif

Davinder

Sunil

Rubic

N. A.

N. A.

N. A.

 ARRAYS

 An array is a collection of variables of same type that are referred by a common name.

 All arrays consist of contiguous memory locations. The lowest address corresponds to the

first element and the highest address to the last element.

Example:

We can use an array to hold a record of the dialy high temperature for a month,a list of stock

prices, employee details etc.

ONE DIMENSIONAL ARRAY

A one dimensional array is a list of related variables.

General form:

Type [] array-name=new type [size];

 Type declares the data type of an array.

 In c# the square bracket comes after type. Single square bracket indicates one-

dimensional array.

 The numbers of array elements are determined by size.

 Since arrays are implemented as objects, the creation of an array is a two-step process.

 Step 1: First declare array reference variable.

Example: int [] sample;

 Step 2: Allocate memory for the array, assigning a reference to that memory to the array

variable by using new operator.

Sample=new int [10];

ASSIGNING VALUES TO ARRAYS

1) We can assign values to individual array elements, by using the index number, like:

double[] balance = new double[10];

balance[0] = 4500.0;

2) We can assign values to the array at the time of declaration, like:

double[] balance = { 2340.0, 4523.69, 3421.0};

3) We can also create and initialize an array, like:

int [] marks = new int[5] { 99, 98, 92, 97, 95};

4) In the preceding case, We may also omit the size of the array, like:

int [] marks = new int[] { 99, 98, 92, 97, 95};

5) We can also copy an array variable into another target array variable. In that case, both

the target and source would point to the same memory location:

int [] marks = new int[] { 99, 98, 92, 97, 95};

int[] score = marks;

EXAMPLE OF SINGLE-DIMENSIONAL ARRAY

using System;

namespace ArrayApplication

{

 class MyArray

 {

 static void Main(string[] args)

 {

 int [] n = new int[10]; /* n is an array of 10 integers */

 int i,j;

 /* initialize elements of array n */

 for (i = 0; i < 10; i++)

 {

 n[i] = i + 100;

 }

 /* output each array element's value */

 for (j = 0; j < 10; j++)

 {

 Console.WriteLine("Element[{0}] = {1}", j, n[j]);

 }

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Element[0] = 100

Element[1] = 101

Element[2] = 102

Element[3] = 103

Element[4] = 104

Element[5] = 105

Element[6] = 106

Element[7] = 107

Element[8] = 108

Element[9] = 109

1.4MULTI-DIMENSIONAL ARRAY

A multi-dimensional array is an array that has two or more dimensions and an individual element

is accessed through the combination of two or more indices.

TWO-DIMENSIONAL ARRAYS

 The simplest form of the multidimensional array is the 2-dimensional array. A 2-

dimensional array is, in essence, a list of one-dimensional arrays.

 A 2-dimensional array can be thought of as a table, which will have x number of rows

and y number of columns. Following is a 2-dimentional array, which contains 3 rows and

4 columns:

 Thus, every element in array a is identified by an element name of the form a[i , j],

where a is the name of the array, and i and j are the subscripts that uniquely identify each

element in a.

DECLARATION

 To declare a two-dimensional integer array of size 10, 20 (i.e.) 10 rows and 20 columns,

Int [,] array_name = new int [10, 20];

 Note that the two-dimension arrays are separated from each other by a comma.

INITIALIZING TWO-DIMENSIONAL ARRAYS

 Two dimensional arrays may be initialized by specifying bracketed values for each row.

Following is an array with 3 rows and each row has 4 columns.

int [,] a = int [3,4] = {

 {0, 1, 2, 3} , /* initializers for row indexed by 0 */

 {4, 5, 6, 7} , /* initializers for row indexed by 1 */

 {8, 9, 10, 11} /* initializers for row indexed by 2 */

};

DECLARING ARRAY OF THREE OR MORE DIMENSIONS

Type [,…,] array_name = new type[size1,size2,….size N];

EXAMPLE OF MULTI-DIMENSIONAL ARRAYS

using System;

 class Program

 {

 static void Main(string[] args)

 {

 int t, i;

 int [,] table = new int [3,4];

 for (t = 0; t < 3; ++t)

 {

 for (i = 0; i < 4; i++)

 {

 table[t, i] = (t * 4) + i + 1;

 Console.WriteLine(table[t, i] + " ");

 }

 }

 }

 }

OUTPUT (CONCEPTUAL VIEW)

 0 1 2 3

0

1

2

 JAGGED ARRAYS

A Jagged array is an array of arrays.

A jagged array is an array in which the length of each array can differ. Thus a jagged array can

be used to create a table in which the lengths of the rows are not the same.

int [] [] x = new int [3] [];

x[0] = new int [3];

x[1] =new int [2];

x[2] =new int [4];

1 2 3 4

 5 6 7 8

9 10 11 12

X[0][0] X[0][1]

X[0][2]

X[1][0]

X[1][1]

X[2][0]

X[2][1]

X[2][2]

X[2][3]

EXAMPLE

using System;

namespace ArrayApplication

{

 class MyArray

 {

 static void Main(string[] args)

 {

 /* a jagged array of 5 array of integers*/

 int[][] a = new int[][]{new int[]{0,0},new int[]{1,2},

 new int[]{2,4},new int[]{ 3, 6 }, new int[]{ 4, 8 } };

 int i, j;

 /* output each array element's value */

 for (i = 0; i < 5; i++)

 {

 for (j = 0; j <; 2; j++)

 {

 Console.WriteLine("a[{0}][{1}] = {2}", i, j, a[i][j]);

 }

 }

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

a[0][0]: 0

a[0][1]: 0

a[1][0]: 1

a[1][1]: 2

a[2][0]: 2

a[2][1]: 4

a[3][0]: 3

a[3][1]: 6

a[4][0]: 4

a[4][1]: 8

THE FOR EACH-LOOP

 The for each loop is used to cycle through the elements of a collection.

 A collection is a group of objects.

 C# defines several types of collections, of which one is an array.

 The general form of for each loop:

Foreach(type var_name in collection)

{

 Statements;

}

 The type specifies the data type and var_name specuies the name of the iteration variable.

 Collections specifies the array.

 The array type and iteration variable type should be same.

 The iteration variable is read only and hence we cannot change the contents of the array

by assigning new value to iteration variable.

EXAMPLE

using System;

 class Program

 {

 static void Main(string[] args)

 {

 int sum = 0;

 int[] nums = new int[10];

 for (int i = 0; i < 10; i++)

 {

 nums[i] = i;

 }

 foreach (int x in nums)

 {

 Console.WriteLine("Vaue is:" + x);

 sum += x;

 }

 Console.WriteLine("Summation:" + sum);

 }

 }

OUTPUT

Value is : 0

Value is : 1

Value is : 2

Value is : 3

Value is : 4

Value is : 5

Value is : 6

Value is : 7

Value is : 8

Value is : 9

Sumation : 45

 STRINGS

 From a day-to-day programming standpoint, one of the most important of C#’s data types

is string.

 string defines and supports character strings. In many other programming languages a

string is an array of characters.

 This is not the case with C#. In C#, strings are objects. Thus, string is a reference type.

For example, in the statement

 Console.WriteLine("In C#, strings are objects.");

 The string “In C#, strings are objects.” is automatically made into a string object by C#.

Constructing Strings

 The easiest way to construct a string is to use a string literal.

 For example, here str is a string reference variable that is assigned a reference to a string

literal: string str = "C# strings are powerful.";

 In this case, str is initialized to the character sequence “C# strings are powerful.”

 You can also create a string from a char array. For example:

using System;

class StringDemo {

public static void Main() {

char[] charray = {'A', ' ', 's', 't', 'r', 'i', 'n', 'g', '.' };

string str1 = new string(charray);

string str2 = "Another string.";

Console.WriteLine(str1);

Console.WriteLine(str2);

}

}

The output from the program is shown here:

A string.

Another string.

Operating on Strings

The string class contains several methods that operate on strings. Table 7-1 shows a few. The

string type also includes the Length property, which contains the length of the string. To obtain

the value of an individual character of a string, you simply use an index. For example:

 string str = "test";

Console.WriteLine(str[0]);

This displays “t”, the first character of “test”. Like arrays, string indexes begin at zero. One

important point, however, is that you cannot assign a new value to a character within a string

using an index. An index can only be used to obtain a character.

Here is a program that demonstrates several string operations:

// Some string operations.

using System;

class StrOps {

public static void Main() {

string str1 =

"When it comes to .NET programming, C# is #1.";

string str2 = string.Copy(str1);

string str3 = "C# strings are powerful.";

string strUp, strLow;

int result, idx;

Console.WriteLine("str1: " + str1);

Console.WriteLine("Length of str1: " +

str1.Length);

// create upper- and lowercase versions of str1

strLow = str1.ToLower();

strUp = str1.ToUpper();

Console.WriteLine("Lowercase version of str1:\n " +

strLow);

Console.WriteLine("Uppercase version of str1:\n " +

strUp);

Console.WriteLine();

// display str1, one char at a time.

Console.WriteLine("Display str1, one char at a time.");

for(int i=0; i < str1.Length; i++)

Console.Write(str1[i]);

Console.WriteLine("\n");

// compare strings

if(str1 == str2)

Console.WriteLine("str1 == str2");

else

Console.WriteLine("str1 != str2");

if(str1 == str3)

Console.WriteLine("str1 == str3");

else

Console.WriteLine("str1 != str3");

result = str1.CompareTo(str3);

if(result == 0)

Console.WriteLine("str1 and str3 are equal");

else if(result < 0)

Console.WriteLine("str1 is less than str3");

else

Console.WriteLine("str1 is greater than str3");

Console.WriteLine();

// assign a new string to str2

str2 = "One Two Three One";

// search string

idx = str2.IndexOf("One");

Console.WriteLine("Index of first occurrence of One: " + idx);

idx = str2.LastIndexOf("One");

Console.WriteLine("Index of last occurrence of One: " + idx);

}

}

This program generates the following output:

str1: When it comes to .NET programming, C# is #1.

Length of str1: 44

Lowercase version of str1:

when it comes to .net programming, c# is #1.

Uppercase version of str1:

WHEN IT COMES TO .NET PROGRAMMING, C# IS #1.

Display str1, one char at a time.

When it comes to .NET programming, C# is #1.

str1 == str2

str1 != str3

str1 is greater than str3

Index of first occurrence of One: 0

Index of last occurrence of One: 14

You can concatenate (join together) two strings using the + operator. For example, this

statement:

string str1 = "One";

string str2 = "Two";

string str3 = "Three";

string str4 = str1 + str2 + str3;

initializes str4 with the string “OneTwoThree”.

Arrays of Strings

Like any other data type, strings can be assembled into arrays. For example:

// Demonstrate string arrays.

using System;

class StringArrays {

public static void Main() {

string[] str = { "This", "is", "a", "test." };

Console.WriteLine("Original array: ");

for(int i=0; i < str.Length; i++)

Console.Write(str[i] + " ");

Console.WriteLine("\n");

// change a string

str[1] = "was";

str[3] = "test, too!";

Console.WriteLine("Modified array: ");

for(int i=0; i < str.Length; i++)

Console.Write(str[i] + " ");

}

}

Here is the output from this program:

Original array:

This is a test.

Modified array:

This was a test, too!

STRUCTURES

 Classes are reference types.

 This means that class objects are accessed through a reference.

 This differs from the value types, which are accessed directly.

 However, sometimes it would be useful to be able to access an object directly, in the

 way that value types are.

 One reason for this is efficiency. Accessing class objects through a reference adds

overhead onto every access. It also consumes space.

SYNTAX

Structures are declared using the keyword struct and are syntactically similar to classes.

Here is the general form of a struct:

struct name : interfaces {

 // member declarations

}

 Structures do not support inheritance; structure members cannot be specified as abstract,

virtual, or protected.

 A structure object can be created using new in the same way as a class object, but it is

not required. When new is used, the specified constructor is called. When new is not

used, the object is still created, but it is not initialized. Thus, you will need to perform

any initialization manually

// Demonstrate a structure.

using System;

// Define a structure.

struct Book {

 public string author;

 public string title;

 public int copyright;

 public Book(string a, string t, int c) {

 author = a;

 title = t;

 copyright = c;

 }

}

// Demonstrate Book structure.

class StructDemo {

 public static void Main() {

 Book book1 = new Book("Herb Schildt","C#: The Complete Reference", 2005); // explicit

constructor

 Book book2; // no constructorPART I

 Console.WriteLine(book1.title + " by " + book1.author + ", (c) " + book1.copyright);

 Console.WriteLine();

// Console.WriteLine(book2.title); // error, must initialize first

 Book2.title = "Red Storm Rising";

 Console.WriteLine(book3.title); // now OK

 }

}

The output from this program is shown here:

C#: The Complete Reference by Herb Schildt, (c) 2005

Red Storm Rising

// Copy a struct.

using System;

// Define a structure.

struct MyStruct {

 public int x;

}328 Part I: The C# Language

// Demonstrate structure assignment.

class StructAssignment {

 public static void Main() {

 MyStruct a;

 MyStruct b;

 a.x = 10;

 b.x = 20;

 Console.WriteLine("a.x {0}, b.x {1}", a.x, b.x);

 a = b;

 b.x = 30;

 Console.WriteLine("a.x {0}, b.x {1}", a.x, b.x);

 }

}

The output is shown here:

a.x 10, b.x 20

a.x 20, b.x 30

As the output shows, after the assignment

a = b;

The structure variables a and b are still separate and distinct. That is, a does not refer to or

relate to b in any way other than containing a copy of b’s value.

This would not be the case if a and b were class references. For example, here is the class

version of the preceding

program:

// Copy a class.

using System;

// Define a structure.

class MyClass {

 public int x;

}

// Now show a class object assignment.

class ClassAssignment {

 public static void Main() {

 MyClass a = new MyClass();

 MyClass b = new MyClass();

 a.x = 10;

 b.x = 20;

 Console.WriteLine("a.x {0}, b.x {1}", a.x, b.x);

 a = b;

 b.x = 30;PART I

Chapter 12: Interfaces, Structures, and Enumerations 329

 Console.WriteLine("a.x {0}, b.x {1}", a.x, b.x);

 }

}

The output from this version is shown here:

a.x 10, b.x 20

a.x 30, b.x 30

As you can see, after the assignment of b to a, both variables refer to same object—the one

originally referred to by b.

COLLECTIONS

Collection classes are specialized classes for data storage and retrieval.

These classes provide support for stacks, queues, lists, and hash tables. Most collection classes

implement the same interfaces.

Collection classes serve various purposes, such as allocating memory dynamically to elements

and accessing a list of items on the basis of an index etc. These classes create collections of

objects of the Object class, which is the base class for all data types in C#.

Various Collection Classes and Their Usage

The following are the various commonly used classes of the System.Collection namespace.

Click the following links to check their detail.

Class Description and Useage

ArrayList

It represents ordered collection of an object that can

be indexed individually.

It is basically an alternative to an array. However unlike

array you can add and remove items from a list at a

specified position using an index and the array resizes

itself automatically. It also allows dynamic memory

allocation, add, search and sort items in the list.

Hashtable

It uses a key to access the elements in the collection.

A hash table is used when you need to access elements by

using key, and you can identify a useful key value. Each

item in the hash table has a key/value pair. The key is

used to access the items in the collection.

SortedList

It uses a key as well as an index to access the items in a

list.

A sorted list is a combination of an array and a hash table.

It contains a list of items that can be accessed using a key

http://www.tutorialspoint.com/csharp/csharp_arraylist.htm
http://www.tutorialspoint.com/csharp/csharp_hashtable.htm
http://www.tutorialspoint.com/csharp/csharp_sortedlist.htm

or an index. If you access items using an index, it is an

ArrayList, and if you access items using a key , it is a

Hashtable. The collection of items is always sorted by the

key value.

Stack

It represents a last-in, first out collection of object.

It is used when you need a last-in, first-out access of

items. When you add an item in the list, it is

called pushing the item and when you remove it, it is

calledpopping the item.

Queue

It represents a first-in, first out collection of object.

It is used when you need a first-in, first-out access of

items. When you add an item in the list, it is

called enqueue and when you remove an item, it is

calleddeque.

BitArray

It represents an array of the binary representation using

the values 1 and 0.

It is used when you need to store the bits but do not know

the number of bits in advance. You can access items from

the BitArray collection by using an integer index, which

starts from zero.

REGULAR EXPRESSION

A regular expression is a pattern that could be matched against an input text. The .Net

framework provides a regular expression engine that allows such matching.

In theoretical computer science and formal language theory, a regular

expression (abbreviated regex or regexp) is a sequence ofcharacters that forms a search pattern,

mainly for use in pattern matching with strings, or string matching, i.e. "find and replace"-like

operations.

For example, the simple regexp ^[\t]+|[\t]+$ matches excess whitespace at the beginning or

end of a line.

The Regex Class

The Regex class is used for representing a regular expression.

The Regex class has the following commonly used methods:

S.N Methods & Description

1 public bool IsMatch(string input)

http://www.tutorialspoint.com/csharp/csharp_stack.htm
http://www.tutorialspoint.com/csharp/csharp_queue.htm
http://www.tutorialspoint.com/csharp/csharp_bitarray.htm
http://en.wikipedia.org/wiki/Theoretical_computer_science
http://en.wikipedia.org/wiki/Formal_language_theory
http://en.wikipedia.org/wiki/Character_(computing)
http://en.wikipedia.org/wiki/Pattern_matching
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/String_matching

Indicates whether the regular expression specified in the Regex

constructor finds a match in a specified input string.

2

public bool IsMatch(string input, int startat)
Indicates whether the regular expression specified in the Regex

constructor finds a match in the specified input string, beginning

at the specified starting position in the string.

3
public static bool IsMatch(string input, string pattern)
Indicates whether the specified regular expression finds a match

in the specified input string.

4
public MatchCollection Matches(string input)
Searches the specified input string for all occurrences of a regular

expression.

5

public string Replace(string input, string replacement)

In a specified input string, replaces all strings that match a regular

expression pattern with a specified replacement string.

6

public string[] Split(string input)

Splits an input string into an array of substrings at the positions

defined by a regular expression pattern specified in the Regex

constructor.

using System;

using System.Text.RegularExpressions;

namespace RegExApplication

{

 class Program

 {

 private static void showMatch(string text, string expr)

 {

 Console.WriteLine("The Expression: " + expr);

 MatchCollection mc = Regex.Matches(text, expr);

 foreach (Match m in mc)

 {

 Console.WriteLine(m);

 }

 }

 static void Main(string[] args)

 {

 string str = "A Thousand Splendid Suns";

 Console.WriteLine("Matching words that start with 'S': ");

 showMatch(str, @"\bS\S*");

 Console.ReadKey();

 }

 }

}

Matching words that start with 'S':

The Expression: \bS\S*

Splendid

Suns

INHERITANCE

One of the most important concepts in object-oriented programming is that of inheritance.

Inheritance allows us to define a class in terms of another class, which makes it easier to create

and maintain an application. This also provides an opportunity to reuse the code functionality

and fast implementation time.

When creating a class, instead of writing completely new data members and member functions,

the programmer can designate that the new class should inherit the members of an existing class.

This existing class is called the base class, and the new class is referred to as the derived class.

The idea of inheritance implements the IS-A relationship. For example, mammal IS A animal,

dog IS-Amammal hence dog IS-A animal as well and so on.

Base and Derived Classes

A class can be derived from more than one class or interface, which means that it can inherit data

and functions from multiple base class or interface.

The syntax used in C# for creating derived classes is as follows:

<acess-specifier> class <base_class>

{

 ...

}

class <derived_class> : <base_class>

{

 ...

}

Consider a base class Shape and its derived class Rectangle:

using System;

namespace InheritanceApplication

{

 class Shape

 {

 public void setWidth(int w)

 {

 width = w;

 }

 public void setHeight(int h)

 {

 height = h;

 }

 protected int width;

 protected int height;

 }

 // Derived class

 class Rectangle: Shape

 {

 public int getArea()

 {

 return (width * height);

 }

 }

 class RectangleTester

 {

 static void Main(string[] args)

 {

 Rectangle Rect = new Rectangle();

 Rect.setWidth(5);

 Rect.setHeight(7);

 // Print the area of the object.

 Console.WriteLine("Total area: {0}", Rect.getArea());

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Total area: 35

OPERATOR OVERLOADING

Overloaded operators are functions with special names the keyword operator followed by the

symbol for the operator being defined. Like any other function, an overloaded operator has a

return type and a parameter list.

For example, look at the following function:

public static Box operator+ (Box b, Box c)

{

 Box box = new Box();

 box.length = b.length + c.length;

 box.breadth = b.breadth + c.breadth;

 box.height = b.height + c.height;

 return box;

}

The above function implements the addition operator (+) for a user-defined class Box. It adds the

attributes of two Box objects and returns the resultant Box object.

Implementation of Operator Overloading

The following program shows the complete implementation:

using System;

namespace OperatorOvlApplication

{

 class Box

 {

 private double length; // Length of a box

 private double breadth; // Breadth of a box

 private double height; // Height of a box

 public double getVolume()

 {

 return length * breadth * height;

 }

 public void setLength(double len)

 {

 length = len;

 }

 public void setBreadth(double bre)

 {

 breadth = bre;

 }

 public void setHeight(double hei)

 {

 height = hei;

 }

 // Overload + operator to add two Box objects.

 public static Box operator+ (Box b, Box c)

 {

 Box box = new Box();

 box.length = b.length + c.length;

 box.breadth = b.breadth + c.breadth;

 box.height = b.height + c.height;

 return box;

 }

 }

 class Tester

 {

 static void Main(string[] args)

 {

 Box Box1 = new Box(); // Declare Box1 of type Box

 Box Box2 = new Box(); // Declare Box2 of type Box

 Box Box3 = new Box(); // Declare Box3 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

 Box1.setLength(6.0);

 Box1.setBreadth(7.0);

 Box1.setHeight(5.0);

 // box 2 specification

 Box2.setLength(12.0);

 Box2.setBreadth(13.0);

 Box2.setHeight(10.0);

 // volume of box 1

 volume = Box1.getVolume();

 Console.WriteLine("Volume of Box1 : {0}", volume);

 // volume of box 2

 volume = Box2.getVolume();

 Console.WriteLine("Volume of Box2 : {0}", volume);

 // Add two object as follows:

 Box3 = Box1 + Box2;

 // volume of box 3

 volume = Box3.getVolume();

 Console.WriteLine("Volume of Box3 : {0}", volume);

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Volume of Box1 : 210

Volume of Box2 : 1560

Volume of Box3 : 5400

Overloadable and Non-Overloadable Operators

The following table describes the overload ability of the operators in C#:

Operators Description

+, -, !, ~, ++, --
These unary operators take one operand and can be

overloaded.

+, -, *, /, %
These binary operators take one operand and can

be overloaded.

==, !=, <, >, <=, >= The comparison operators can be overloaded

&&, ||
The conditional logical operators cannot be

overloaded directly.

+=, -=, *=, /=, %= The assignment operators cannot be overloaded.

=, ., ?:, ->, new, is, sizeof, typeof These operators cannot be overloaded.

EVENTS

Events are basically a user action like key press, clicks, mouse movements, etc., or some

occurrence like system generated notifications. Applications need to respond to events when they

occur.

An event can have many handlers. With the event handler syntax, we create a notification

system.

To declare an event inside a class, first a delegate type

for the event must be declared.

Next:The event keyword is used to create an instance of

an event that can store methods in its invocation list.

using System;

public delegate void EventHandler();

class Program

{

 public static event EventHandler _show;

 static void Main()

 {

 // Add event handlers to Show event.

 _show += new EventHandler(Dog);

 _show += new EventHandler(Cat);

 _show += new EventHandler(Mouse);

 _show += new EventHandler(Mouse);

 // Invoke the event.

 _show.Invoke();

 }

 static void Cat()

 {

 Console.WriteLine("Cat");

 }

 static void Dog()

 {

 Console.WriteLine("Dog");

 }

 static void Mouse()

 {

 Console.WriteLine("Mouse");

 }

}

Output

Dog

Cat

Mouse

Mouse

Control flow begins in the Main entry point. The

_show event has four method instances added to its

invocation list with the plus "+=" operator. This has no

relation to the arithmetic addition operator.

Next:In the invocation list of the _show event, we add

four events: Dog, Cat and two instances of Mouse.

Finally:When the Invoke method is called, each of those

method instances are called. The strings are printed to

the console.

Console.WriteLine

http://www.dotnetperls.com/console-writeline

UNIT-III

CLASSES AND OBJECTS

 A class is used to specify the form of an object and it combines data representation and

methods for manipulating that data into one neat package.

 The data and functions within a class are called members of the class.

 When you define a class, you define a blueprint for a data type.

 This doesn't actually define any data, but it does define what the class name means, that

is, what an object of the class will consist of and what operations can be performed on

such an object.

 The keyword public determines the access attributes of the members of the class that

follow it. A public member can be accessed from outside the class anywhere within the

scope of the class object. You can also specify the members of a class

as private or protected which we will discuss in a sub-section.

Objects:

 A class provides the blueprints for objects, so basically an object is created from a class.

Module mybox

 Class Box

 Public length As Double ' Length of a box

 Public breadth As Double ' Breadth of a box

 Public height As Double ' Height of a box

 End Class

 Sub Main()

 Dim Box1 As Box = New Box() ' Declare Box1 OBJECT of type Box

 Dim Box2 As Box = New Box() ' Declare Box2 OBJECT of type Box

 Dim volume As Double = 0.0 ' Store the volume of a box here

 ' box 1 specification

 Box1.height = 5.0

 Box1.length = 6.0

 Box1.breadth = 7.0

 ' box 2 specification

 Box2.height = 10.0

 Box2.length = 12.0

 Box2.breadth = 13.0

 'volume of box 1

 volume = Box1.height * Box1.length * Box1.breadth

 Console.WriteLine("Volume of Box1 : {0}", volume)

 'volume of box 2

 volume = Box2.height * Box2.length * Box2.breadth

 Console.WriteLine("Volume of Box2 : {0}", volume)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Volume of Box1 : 210

Volume of Box2 : 1560

FIELDS

 Fields, also known as data members, hold the internal state of an object.

 Their declarations appear only within class and structure declarations.

 Field declarations include an access modifier, which determines how visible the field is

from code outside the containing class definition.

 The value stored in a field is specific to a particular object instance.

 Two instances can have different values in their corresponding fields. For example:

 Dim emp1 As New Employee()

 Dim emp2 As New Employee()

 emp1.EmployeeNumber = 10

 emp2.EmployeeNumber = 20 ' Doesn't affect emp1.

 Sometimes it is desirable to share a single value among all instances of a particular class.

Declaring a field using the Shared keyword does this, as shown here:

 Public Class X

 Public Shared a As Integer

 End Class

 Changing the field value through one instance affects what all other instances see. For

example:

 Dim q As New X()

 Dim r As New X()

 q.a = 10

 r.a = 20

 Console.WriteLine(q.a) ' Writes 20, not 10.

 Shared fields are also accessible through the class name:

 Console.WriteLine(X.a)

READ-ONLY FIELDS

 Fields can be declared with the ReadOnly modifier, which signifies that the field's value

can be set only in a constructor for the enclosing class.

 This gives the benefits of a constant when the value of the constant isn't known at

compile time or can't be expressed in a constant initializer.

 Here's an example of a class that has a read-only field initialized in the class's

constructor:

 Public Class MyDataTier

 Public ReadOnly ActiveConnection As System.Data.SqlClient.SqlConnection

 Public Sub New(ByVal ConnectionString As String)

 ActiveConnection = NeW

System.Data.SqlClient.SqlConnection(ConnectionString)

 End Sub

 End Class

 The ReadOnly modifier applies only to the field itself—not to members of any object

referenced by the field. For example, given the previous declaration of the MyDataTier

class, the following code is legal:

 Dim mydata As New MyDataTier(strConnection)

 mydata.ActiveConnection.ConnectionString = strSomeOtherConnection

METHODS

Methods are members that contain code. They are either subroutines (which don't have a return

value) or functions (which do have a return value).

Subroutine definitions look like this:

[method_modifiers] Sub [attribute_list] method_name ([parameter_list]) [handles_or_implements]

[method_body]

End Sub

Function definitions look like this:

[method_modifiers] Function method_name ([parameter_list]) [As type_name] [handles_or_implements]

[method_body]

End Function

EXAMPLE:

Module mybox

 Class Box

 Public length As Double ' Length of a box

 Public breadth As Double ' Breadth of a box

 Public height As Double ' Height of a box

 Public Sub setLength(ByVal len As Double)

 length = len

 End Sub

 Public Sub setBreadth(ByVal bre As Double)

 breadth = bre

 End Sub

 Public Sub setHeight(ByVal hei As Double)

 height = hei

 End Sub

 Public Function getVolume() As Double

 Return length * breadth * height

 End Function

 End Class

 Sub Main()

 Dim Box1 As Box = New Box() ' Declare Box1 of type Box

 Dim Box2 As Box = New Box() ' Declare Box2 of type Box

 Dim volume As Double = 0.0 ' Store the volume of a box here

 ' box 1 specification

 Box1.setLength(6.0)

 Box1.setBreadth(7.0)

 Box1.setHeight(5.0)

 'box 2 specification

 Box2.setLength(12.0)

 Box2.setBreadth(13.0)

 Box2.setHeight(10.0)

 ' volume of box 1

 volume = Box1.getVolume()

 Console.WriteLine("Volume of Box1 : {0}", volume)

 'volume of box 2

 volume = Box2.getVolume()

 Console.WriteLine("Volume of Box2 : {0}", volume)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Volume of Box1 : 210

Volume of Box2 : 1560

PROPERTY

 A Property is similar to a Function.With a getter and a setter, it controls access to a

value.

 This value is called a backing store.

 With Get it returns a value. With Set it stores a value.

GET, SET

 This example program uses the Property keyword.

 On the Number () property, we provide a Get block and a Set block.

 In Get we return a value the backing store count.

 In Set we receive a parameter and then store it in the count field.

TYPES:

 A property can have any data type.

 It does not need to be an Integer.

 It can be a Class.

Program that uses property syntax: VB.NET

Class Example

 Private _count As Integer

 Public Property Number() As Integer

 Get

 Return _count

 End Get

 Set(ByVal value As Integer)

 _count = value

 End Set

 End Property

End Class

Module Module1

 Sub Main()

 Dim e As Example = New Example()

 ' Set property.

 e.Number = 1

 ' Get property.

 Console.WriteLine(e.Number)

 End Sub

End Module

Output

1

 When the value 1 is assigned to the Number property, Set is executed.

 The count field stores the value 1.

 When the Number property is accessed but not assigned to, Get is executed.

 The value of the count field is returned.

 A property must have both Get and Set members. It is possible to use the ReadOnly or

WriteOnly keywords to eliminate this requirement.

READONLY

 The ReadOnly modifier changes the Property type to only have a Get method.

 In this program, the Count() property returns a constant Integer.

 But Get could perform any calculation and return the value of a field.

 ReadOnly does not require a constant return value.

 If we try to assign a value to Count, we get this error: "Property Count is ReadOnly." So

don't do that.

Program that uses ReadOnly Property: VB.NET

Class Example

 Public ReadOnly Property Count() As Integer

 Get

 Return 500

 End Get

 End Property

End Class

Module Module1

 Sub Main()

 Dim e As Example = New Example()

 Console.WriteLine(e.Count)

 End Sub

End Module

Output

500

INHERITANCE

 Visual Basic supports inheritance, which is the ability to define classes that serve as the

basis for derived classes.

 Derived classes inherit, and can extend, the properties, methods, and events of the base

class. Derived classes can also override inherited methods with new implementations.

 By default, all classes created with Visual Basic are inheritable.

 Inheritance lets you write and debug a class one time and then reuse that code as the basis

of new classes.

 Inheritance also lets you use inheritance-based polymorphism, which is the ability to

define classes that can be used interchangeably by client code at run time, but with

functionally different, yet identically named methods or properties.

SYNTAX

The syntax used in VB.Net for creating derived classes is as follows:

<access-specifier> Class <base_class>

...

End Class

Class <derived_class>: Inherits <base_class>

...

End Class

' Base class

Class Shape

 Protected width As Integer

 Protected height As Integer

 Public Sub setWidth(ByVal w As Integer)

 width = w

 End Sub

 Public Sub setHeight(ByVal h As Integer)

 height = h

 End Sub

End Class

' Derived class

Class Rectangle : Inherits Shape

 Public Function getArea() As Integer

 Return (width * height)

 End Function

End Class

Class RectangleTester

 Shared Sub Main()

 Dim rect As Rectangle = New Rectangle()

 rect.setWidth(5)

 rect.setHeight(7)

 ' Print the area of the object.

 Console.WriteLine("Total area: {0}", rect.getArea())

 Console.ReadKey()

 End Sub

End Class

When the above code is compiled and executed, it produces the following result:

Total area: 35

POLYMORPHISM

 It is the ability of classes to provide different implementation of methods that are called

by same name.

 Polymorphism is one of the primary characteristics of Object Oriented Programming.

 “Poly” means “many” and “morph” means “form”.

 Thus polymorphism refers to being able to use many form of a type without regard to the

details.

 Polymorphism is the ability to redefine method for derived classes.

Types of Polymorphism

Compile Time Polymorphism.

Runtime Polymorphism.

Compile Time Polymorphism

 Compile time Polymorphism also known as Method Overloading.

 Method Overloading means having two or more methods with the same name but with

different parameters.

 It is also called as static polymorphism.

 Which method is to be called is decided at the compile time only.

 In static Polymorphism decision is taken at the Compile time.

Module Module1

 Public Class mul

 Public a, b As Integer

 Public c, d As Double

 Public Function mul(ByVal a As Integer) As Integer

 Return a

 End Function

 Public Function mul(ByVal a As Integer,

 ByVal b As Integer) As Integer

 Return a * b

 End Function

 Public Function mul(ByVal d As Double,

 ByVal c As Double) As Double

 Return d * c

 End Function

 End Class

 Sub Main()

 Dim res As New mul

 System.Console.WriteLine

 ("Overloaded Values of Class Mul is::")

 System.Console.WriteLine(res.mul(10))

 System.Console.WriteLine(res.mul(20, 10))

 System.Console.WriteLine(res.mul(12.12, 13.23))

 Console.Read()

 End Sub

End Module

Result:
 Overloaded values of Class Mul is:

 10

 200

 160.3476

Runtime Polymorphism

 Run Time Polymorphism also known as Method Overriding.

 Method Overriding means having two or more methods with the same name, same

parameters but with different implementation.

 It is also called as Dynamic Polymorphism.

 In this process, an overridden method is called through reference variable of a superclass;

the determination of the method to be called is based on the object being referred to by

reference variable.

 The parent class uses the same virtual keyword. Every class that overrides the virtual

method will use the override keyword.

Over riding in VB.NET

 Overriding in VB.net is method by which a inherited property or a method is overidden to

perform a different functionality in a derived class. The base class function is declared using a

keyword Overridable and the derived class function where the functionality is changed contains

an keyword Overrides.

Example:

 Module Module1

 Class Over

 Public Overridable Function add(ByVal x As Integer,

 ByVal y As Integer)

 Console.WriteLine('Function Inside Base Class')

 Return (x + y)

 End Function

 End Class

 Class DerOver

 Inherits Over

 Public Overrides Function add(ByVal x As Integer,

 ByVal y As Integer)

 Console.WriteLine(MyBase.add(120, 100))

 Console.WriteLine('Function Inside Derived Class')

 Return (x + y)

 End Function

 End Class

 Sub Main()

 Dim obj As New DerOver

 Console.WriteLine(obj.add(10, 100))

 Console.Read()

 End Sub

 End Module

Result:
 Function Inside Base Class

 220

 Function Inside Derived Class

 110

Description:

In the above overriding example the base class function add is overridden in the derived class

using the MyBase.add(120,100)statement. So first the overidden value is displayed, then the

value from the derived class is displayed.

OPERATOR OVERLOADING

 Operator overloading is the ability for you to define procedures for a set of operators on a

given type.

 This allows you to write more intuitive and more readable code.

 When an operator can perform more than one operations, specially with objects, known

as operator overloading.

 A function name can be replaced with the operator using operator keyword.

Important points related to Operator overloading or guidelines:

 Don't change an operator's semantic meaning. The result of an operator should be

intuitive.

 Make certain overloaded operators are shared methods.

 You cannot overload assignment e.g., the "=" operator .

The operators that can be defined on your class or structure are as follows:

 Unary operators:

 + - Not IsTrue IsFalse CType

 Binary operators:

 + - * / \ & Like Mod And Or Xor

 ^ << >> = <> > < >= <=

 You can't overload member access, method invocation, or the AndAlso, OrElse,

New, TypeOf... Is, Is, IsNot, AddressOf, GetType, and AsType operators.

 Note that assignment itself (=) is a statement, so you can't overload it either.

 Secondly, operator overloading cannot be used to change to order in which operators are

executed on a given line.

 For example, multiplication will always happen before addition, unless parentheses are

used appropriately.

Module Module1
 Class Complex
 Private x As [Double]
 Private y As [Double]
 Public Sub New()
 End Sub
 Public Sub New(ByVal real As [Double], ByVal image As [Double])
 x = real
 y = image
 End Sub
 Public Shared Operator +(ByVal c1 As complex, ByVal c2 As complex) As complex
 Dim c3 As New Complex()
 c3.x = c1.x + c2.x
 c3.y = c1.y + c2.y
 Return (c3)

 End Operator
 Public Sub Display()
 Console.Write(x)
 Console.Write("+j" & Convert.ToString(y))
 Console.WriteLine()
 End Sub
 End Class
 Sub Main()
 Dim a As Complex, b As Complex, c As Complex
 a = New Complex(2.5, 3.5)
 b = New Complex(1.6, 2.7)
 c = a + b
 Console.Write("a=")
 a.Display()
 Console.Write("b=")
 b.Display()
 Console.Write("c=")
 c.Display()
 End Sub
 End Module

OUTPUT

a=2.5+3.5j

b=1.6+2.7j

c=4.1+6.2j

INTERFACES

 Interfaces in VB.net are used to define the class members using a keyword Interface,

without actually specifying how it should be implemented in a Class.

 Interfaces are examples for multiple Inheritances and are implemented in the classes

using the keyword Implements that is used before any Dim statement in a class.

Example:
 Module Module1

 Public Interface Interface1

 Function Add(ByVal x As Integer) As Integer

 End Interface

 Public Class first Implements Interface1

 Public Function Add(ByVal x As Integer) As Integer Implements Interface1.Add

 Console.WriteLine("Implementing x+x in first class::" & (x + x))

 End Function

 End Class

 Public Class second Implements Interface1

 Public Function Add(ByVal x As Integer) As Integer Implements Interface1.Add

 Console.WriteLine("Implementing x+x+x in second class::" & (x + x + x))

 End Function

 End Class

 Sub Main()

 Dim obj1 As New first

 Dim obj2 As New second

 obj1.Add(10)

 obj2.Add(50)

 Console.Read()

 End Sub

 End Module

Result:

 Implementing x+x in first class:: 20

 Implementing x+x+x in second class:: 150

Description:

In the above example interface Interface1 is implemented in classes first and second but

differently to add the value of 'x' twice and thrice respectively.

ARRAY

 An array stores a fixed-size sequential collection of elements of the same type.

 An array is used to store a collection of data, but it is often more useful to think of an

array as a collection of variables of the same type.

 All arrays consist of contiguous memory locations.

 The lowest address corresponds to the first element and the highest address to the last

element.

CREATING ARRAYS IN VB.NET

To declare an array in VB.Net, you use the Dim statement. For example,

Dim intData(30) ' an array of 31 elements

Dim strData(20) As String ' an array of 21 strings

Dim twoDarray(10, 20) As Integer 'a two dimensional array of integers

Dim ranges(10, 100) 'a two dimensional array

You can also initialize the array elements while declaring the array. For example,

Dim intData() As Integer = {12, 16, 20, 24, 28, 32}

Dim names() As String = {"Karthik", "Sandhya", _

"Shivangi", "Ashwitha", "Somnath"}

Dim miscData() As Object = {"Hello World", 12d, 16ui, "A"c}

The elements in an array can be stored and accessed by using the index of the array. The

following program demonstrates this:

Module arrayApl

 Sub Main()

 Dim n(10) As Integer ' n is an array of 11 integers '

 Dim i, j As Integer

 ' initialize elements of array n '

 For i = 0 To 10

 n(i) = i + 100 ' set element at location i to i + 100

 Next i

 ' output each array element's value '

 For j = 0 To 10

 Console.WriteLine("Element({0}) = {1}", j, n(j))

 Next j

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Element(0) = 100

Element(1) = 101

Element(2) = 102

Element(3) = 103

Element(4) = 104

Element(5) = 105

Element(6) = 106

Element(7) = 107

Element(8) = 108

Element(9) = 109

Element(10) = 110

MULTI-DIMENSIONAL ARRAYS

VB.Net allows multidimensional arrays. Multidimensional arrays are also called rectangular

arrays.

You can declare a 2-dimensional array of strings as:

Dim twoDStringArray(10, 20) As String

or, a 3-dimensional array of Integer variables:

Dim threeDIntArray(10, 10, 10) As Integer

The following program demonstrates creating and using a 2-dimensional array:

Module arrayApl

 Sub Main()

 ' an array with 5 rows and 2 columns

 Dim a(,) As Integer = {{0, 0}, {1, 2}, {2, 4}, {3, 6}, {4, 8}}

 Dim i, j As Integer

 ' output each array element's value '

 For i = 0 To 4

 For j = 0 To 1

 Console.WriteLine("a[{0},{1}] = {2}", i, j, a(i, j))

 Next j

 Next i

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

a[0,0]: 0

a[0,1]: 0

a[1,0]: 1

a[1,1]: 2

a[2,0]: 2

a[2,1]: 4

a[3,0]: 3

a[3,1]: 6

a[4,0]: 4

a[4,1]: 8

INDEXERS

 An indexer is just like a method containing indexer parameter and return type. The return

type can be any valid type. An Indexer must at least have one parameter or the complier

throws an error.

 The main concept behind the indexer is to; treat the object and variables acting as a

protected or Internal.

 The keyword which is used to identify the indexer is “default” and “this”.

 “Default keyword is used when the variables act as an array.

 “this” keyword is used when the objects act As an array.

 An indexer also uses the get, set method as property uses the get, set method.

 The difference between the Indexers and Properties is, the set method of the Indexer

should have a signature. (i.e.) Parameters are passed to the set method of the Indexers.

Example for how the ‘default’ and ‘this’ keyword are used with get, set method:

Default public property Item (ByVal index As Integer) As string

Get

Return mobiles (index -1)

End Get

Set (ByVal value As string)

Index = value

End Set

End Property

this [parameter]

Get

// Get codes here

End Get

Set (Parameter)

//Set codes here

End Set

Now let us consider the following Example:

Public class WeekDays

Private weekDays (7) As string

Public Sub New ()

weekDays (0) = “Monday”

weekDays (1) = “Tuesday”

weekDays (2) = “Wednesday”

weekDays (3) = “Thursday”

weekDays (4) = “Friday”

weekDays (5) = “Saturday”

weekDays (6) =”Sunday”

End Sub

Public Function GetDayByNumber (ByVal dayNumber As Integer) As String

Return weekDays (dayNumber)

End Function

End Class

Sub Main ()

Dim wk As New WeekDays

Console.WriteLine (wk.GetDayByNumber (3))

End Sub

OUTPUT is: ‘Thursday’

Now let us see how we can define an indexer in the WeekDays class. In this case, indexer is

defined using the ‘default’ keyword because; we are going to make use of the variables.

 Public class WeekDays

Private weekDays (7) As String

Public Sub New ()

weekDays (0) = “Monday”

weekDays (1) = “Tuesday”

weekDays (2) = “Wednesday”

weekDays (3) = “Thursday”

weekDays (4) = “Friday”

weekDays (5) = “Saturday”

weekDays (6) = “Sunday”

End Sub

Default public property WeekDay (ByVal dayNumber As Integer) As string

Get

Return weekDays (dayNumber)

End Get

Set (ByVal value As string)

weekDays (dayNumber) = value

End Set

End Property

End class

We use the indexer as the following manner; The indexer has essentially turned the WeekDays

class into an array. We can index the wk object directly.

Dim wk As New WeekDays

Console.WriteLine (wk (3))

OUTPUT is: ‘Thursday’

COLLECTIONS

 A collection is a way of grouping and managing related objects. A collection is either

zero-based or one-based, depending on what its starting index is. The zero based

collection means that the index of the first item in the collection is Zero. One based

collection means that the index of the first item in one.

 Visual Basic .Net Collections are data structures that holds Data in different ways for

flexible operations. The important data structures in the collections are ArrayList,

HashTable, Stack and Queue etc.

 ArrayList

 ArrayList is one of the most flexible data structures from VB.Net collection. ArrayList

contains a simple list of values and very easily we can add, insert, delete, and view etc. to

do with ArrayList. It is very flexible because we can add without any size information,

that is, it can grow dynamically and also shrink.

Important Functions in ArrayList

Add: Add an item in an ArrayList

Syntax: ArrayList.add (Item)

 Item – the item to be added to the array list.

Example:

Dim ItemList As New ArrayList ()

ItemList.Add (“Item4”)

Insert:Insert an item in a specified position in an ArrrayList.

Syntax: ArrayList. Insert (index, item)

Index – The position of the item in an ArrayList

Item – The Item to be inserted in the ArrayList.

Example:

ItemList.Insert (3, “item6”)

Remove: Remove an item from ArrayList.

Syntax: ArrayList. Remove (item)

Item – the item to be removed in the ArrayList

Example:

ItemList. Remove (“item 2”)

Remove At:Remove An item from a specified position.

Syntax: ArrayList. RemoveAt (index)

 Index – the position of an item to remove from an array list.

Example:

ItemList. RemoveAt (2)

Sort: Sort Items in an ArrayList.

Syntax: ArrayList.Sort ()

Stack

Stack is one of another easy method used in VB.Net. Stack follows the push – pop operations,

that is we can push Items into stack and pop it later also it follows the last in First Out (LIFO)

system. That is we can push the items into a stack and get it in reverse order. Stack returns the

last item first.

Commonly Used Methods

Push:Add (Push) an item in the stack Data Structure.

Syntax: Stack.Push (object)

 Object – The item to be inserted.

Pop:Pop returns the item, last item inserted in stack.

Syntax: Stack.Pop ()

 Returns the last object in the stack.

Contains:Check the object contains in the Stack.

Syntax: Stack.Contains (object)

 Object – The specified object to be searched.

Queue

Queue works like First in First Out Method. The item added first in the queue is first to get out

from queue. We can Enqueue (add) items in Queue and we can dequeue (remove from queue) or

we can peek (that is get the reference of first item added in Queue) the item from Queue.

Commonly Used Functions

Enqueue:Add an item in Queue.

 Syntax: Stack.Enqueue (object)

 Object – the item to add in Queue.

Dequeue:Remove the oldest item from Queue (We don’t get the item later)

Syntax: Stack.Dequeue ()

 Returns – remove the oldest item and return

Peek:Get the reference of the oldest item (it is not removed permanently)

Syntax: Stack.Peek ()

 Returns – Get the reference of the oldest item in the Queue.

HashTable

HashTable stores a key value pair type collection of Data. We can retrieve items from HashTable

to provide the Key. Both Key and value are objects.

Common Functions Using in HashTables

Add:To add a pair of value in HashTable

Syntax: HashTable.Add (key, value)

 key – The Key value

 value – The value of corresponding key

Constraint Key:Check if a specified key exist or not

Syntax: HashTable.constraintkey (key)

 Key – The key value for search in HashTable

Contains value:Check the specified value exists in Hash Table.

Syntax: HashTable.containsValue (value)

 Value – search the specified value in HashTable.

Remove: Remove the specified key and corresponding value

Syntax: HashTable.Remove (key)

 Key – The argument key of deleting pairs.

Example Program for ArrayList:

Public class Items

Dim i As Integer

Dim ItemList As New ArrayList ()

ItemList.Add (“Item 4”)

ItemList.Add (“Item 5”)

ItemList.Add (“Item 2”)

ItemList.Add (“Item 1”)

ItemList.Add (“Item 3”)

MsgBox (“shows Added Items”)

For i=0 to ItemList.count-1

MsgBox (ItemsList.Item (i))

Next

ItemList.Insert (3, “Item6”)

ItemList.Sort ()

ItemList.Remove (“Item 1”)

ItemList.RemoveAt (3)

MsgBox (“shows final Items the ArrayList”)

For i=0 to ItemList.count-1

MsgBox (ItemList.Item (i))

Next

End class

STRINGS

The string class represents character strings. The string Object is Immutable; it cannot be

modified once it is created. That means every time we use any operation in the string object, we

must create a new String object.

Now we are going to see the important methods used in string class.

Length ()

Insert ()

Index of ()

Equals ()

Compare ()

Substring ()

Split ()

Endswith ()

Concat ()

String.Length ()

Syntax: string.Length () As Integer.

The method returns the number of characters in the specified string.

Example: “This is a Test”.

 Length () returns 14.

Program:

Public class As String

str = “This is a Test”

MsgBox (str.length ())

End class

String.Insert ()

Syntax: String.Insert (Integer ind, String str) As String

 Ind – the index of the specified string to be inserted.

 Str – the string to be inserted.

Example: “This is Test”.

 Insert (8, “Insert”) returns “This is Insert Test”

Program:

Public class Insert

Dim str As string = “This is VB.NET Test”

Dim insStr As string = “Insert”

Dim strRes As string = str.Insert (15, insStr)

MsgBox (strRes)

End class

String.Indexof ()

Syntax: String.Indexof (string str) As Integer

 str – parameter string to check its occurrences.

Example: “This is a test”

 Indexof (“Test”) returns 10.

Program:

Public class Index

Dim str As string

str = “VB.NET Top 10 Books”

MsgBox (str.Indexof (“Book”))

End class

String.Equals ()

Syntax: String.Equals (String str1, String str2) As Boolean

 str1 – the string argument

 str2 – the string argument

Example:

 str1 = “Equals ()”

 str2 = “Equals ()”

 String.Equals (str1, str2) returns True.

Program:

Public class Equals

Dim str1 As string =”Equals”

Dim str2 As string = “Equals”

If string.Equals (str1, str2) Then

MsgBox (“Strings are not Equal ()”)

End If

End class

String.Compare ()

Syntax: string.Compare (string str1, string str2, Boolean) As Integer

 str1 – parameter string

 Str2 – parameter string

Boolean TRUE/FALSE – Indication to check the string with case sensitive or without case

sensitive.

Returns 0 or <0 or >0

>0 – str1 is greater than str2.

0 – str1 is Equal to str2.

<0 – str1 is less than str2.

Program:

Public class Compare

Dim str1 As string

Dim str2 As string

str1= “vb.net”

str2= “VB.Net”

Dim result As Integer

result= string.compare (str1, str2)

MsgBox (result)

result= string.compare (str1, str2, True)

MsgBox (result)

End class

String.substring ()

Syntax: String.Substring (Integer StartIndex, Integer length) As string

 StartIndex – The Index of the start of the substring.

 length – The number of characters in the substring

Program:

Public class stringName

Dim str As string

Dim retstring As string

str =”This is substring test”

retstring =str.Substring (8, 9)

MsgBox (retstring)

End class

String.Split ()

Syntax: String.Split (“ “) As string

Delimiter (separator)

Program:

Public class split

Dim str As string

Dim strArr () As String

Dim count As Integer

str= “Vb.Net Split test”

strArr= str.split (“ “)

for count -0 to strArr.Length-1

MsgBox (strArr(count))

Next

End class

String.Endswith ()

Syntax: String.Endswith (string suffix) As Boolean

 Suffix- the passing string for it Ends with.

Example:

“This is a Test”.

EndsWith (“Test”) returns True.

“This is a Test”.

EndsWith (“is”) returns False.

String.Concat ()

Syntax: String.Concat (string str1, string str2) As string

 str1 – parameter string

 str2 – parameter string

Returns a new string with str1 concat with str2.

REGULAR EXPRESSIONS

Regular Expressions provide a language specifically for parsing and processing strings. They are

highly optimized and can be created as an instance of the Regex Class.

Regular Expression is useful for parsing and processing character based Data, particularly the

following actions can be performed.

Replace or Delete sub strings at matches (REPLACE method).

Parsing input text (SPLIT method)

Extracting data from structured sources such as XML or HTML (Matches or Match method)

Detecting complex patterns of Characters(Is Match method)

These methods can all be used on pre-created instances for speed, they can be or executed on the

fly using static methods on the Regex class.

The relevant code is located in the System.Text.RegularExpressions Namespaces.

There is a collection of special characters ‘ , $ ^ { [(|) * + ? \’ which is used to represent special

characters, groups of characters, repeated characters of words.

To represent these without their special meaning they are escaped using the \ character.

Character escapes match single (non printable) characters or characters with special meaning.

? – Match one or Zero occurrences.

() – Sub expression treated as a single element.

\n – newline character

\s – white space character

\w – word character

^ - Beginning of String

& - End of the string or Line.

The various regular Expressions are:

Regex Matches

Word count

Regex (‘\w+’)

Count chars: Regex.Matches (quote,.)

Word count: Regex.Matches (quote, ‘\w+’)

Count Line: Regex.Matches (quote, ‘.+\n*’)

Regex.Compare to assembly

Match Regular Expression to string and print out all the matches.

Using Regex method Replace: substituted for * with another String.

Using Regex method Replace: Replace one string with another string.

Every word replaces by another word.

Replace first 3 digits.

String split at Commas.

 Examples for Regular Expressions

Word Count

Public class Tester

Sub main ()

Dim quote As String = “ q d e w”

Do while (quote.Indexof(space (2))>=0)

quote = quote.replace (space (2), space (1))

loop

Dim wordcount As Integer= split (quote, space (1)).Length

Console.WriteLine (quote & vbNewLine & “Number of words:” & wordcount.ToString)

End sub

End class

OUTPUT:

q d e w No. of words: 5

Regex (‘\w+’)

Public class Tester

Sub main ()

Dim quote As sting = “The important thing is not to” & - “Stop Questioning. …. Albert

Einstein”

Dim parser as New Regex (“\w+”)

Dim total Matches As Integer = parser.Matches (quote).count

Console.WriteLine (quote & vbNewLine & “ Number of Words:” & - TotalMatches.Tostring)

End Sub

End class

OUTPUT:

The Important thing is not to stop Questioning. – Albert Einstein.

Number of Words: 10

Using Regex method Replace: Replace one string with another

Public class Tester

Sub Main ()

Console.WriteLine (New Regex (“stars”). Replace (“This sentence ends in 5 stars *****”,

“carets”))

End sub

End class

OUTPUT:

This sentence ends in 5 carets*****

Every word replaced by another word

Public class Tester

Sub Main ()

Console.WriteLine (Regex.Replace(“This sentence ends in 5 stars *****”, “\w+”, “word”))

End sub

End class

OUTPUT:

Word word word word word word *****

Replace first 3 digits

Public class Tester

Sub Main ()

Console.WriteLine (New Regex (“\d”).Replace (“1,2,3,4,5,6,7,8”, “digit”, 3))

End Sub

End class

OUTPUT:

digit, digit, digit, 4,5,6,7,8.

UNIT-IV

EXCEPTION HANDLING

An exception is a problem that arises during the execution of a program. An exception is a

response to an exceptional circumstance that arises while a program is running, such as an

attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to another. VB.Net

exception handling is built upon four keywords: Try, Catch, Finally and Throw.

 Try: A Try block identifies a block of code for which particular exceptions will be

activated. It's followed by one or more Catch blocks.

 Catch: A program catches an exception with an exception handler at the place in a

program where you want to handle the problem. The Catch keyword indicates the catching of an

exception.

 Finally: The Finally block is used to execute a given set of statements, whether an

exception is thrown or not thrown. For example, if you open a file, it must be closed whether an

exception is raised or not.

 Throw: A program throws an exception when a problem shows up. This is done using a

Throw keyword.

Syntax

Assuming a block will raise an exception, a method catches an exception using a combination of

the Try and Catch keywords. A Try/Catch block is placed around the code that might generate an

exception. Code within a Try/Catch block is referred to as protected code, and the syntax for

using Try/Catch looks like the following:

Try

 [tryStatements]

 [Exit Try]

[Catch [exception [As type]] [When expression]

 [catchStatements]

 [Exit Try]]

[Catch ...]

[Finally

 [finallyStatements]]

End Try

You can list down multiple catch statements to catch different type of exceptions in case your try

block raises more than one exception in different situations.

Exception Classes in .Net Framework

In the .Net Framework, exceptions are represented by classes. The exception classes in .Net

Framework are mainly directly or indirectly derived from the System.Exception class. Some of

the exception classes derived from the System.Exception class are

the System.ApplicationException andSystem.SystemException classes.

The System.ApplicationException class supports exceptions generated by application

programs. So the exceptions defined by the programmers should derive from this class.

The System.SystemException class is the base class for all predefined system exception.

Handling Exceptions

VB.Net provides a structured solution to the exception handling problems in the form of try and

catch blocks. Using these blocks the core program statements are separated from the error-

handling statements.

These error handling blocks are implemented using the Try, Catch and Finally keywords.

Following is an example of throwing an exception when dividing by zero condition occurs:

Module exceptionProg

 Sub division(ByVal num1 As Integer, ByVal num2 As Integer)

 Dim result As Integer

 Try

 result = num1 \ num2

 Catch e As DivideByZeroException

 Console.WriteLine("Exception caught: {0}", e)

 Finally

 Console.WriteLine("Result: {0}", result)

 End Try

 End Sub

 Sub Main()

 division(25, 0)

 Console.ReadKey()

 End Sub

End Module

When the above code is compiled and executed, it produces the following result:

Exception caught: System.DivideByZeroException: Attempted to divide by zero.

at ...

Result: 0

Delegates in vb.net

 Delegates are pointers that are used to store and tranfer information like the memory address,

event handled by functions and subroutines. Delagates are type safe, since they check for the

signatures of functions and subroutines only if same, they transfer information. A delegate is

declared using the keyword Delegate to a function or procedure name.

Example:

 Module Module1

 Public Delegate Function del1(ByVal x As Integer,

 ByVal y As Integer) As Integer

 Public Delegate Sub Display()

 Public Function check(ByVal x As Integer,

 ByVal y As Integer) As Integer

 Return (x + y)

 End Function

 Public Function multi(ByVal x As Integer,

 ByVal y As Integer) As Integer

 Return (x * y)

 End Function

 Class deleg

 Public Sub Disp()

 Console.WriteLine("Method inside the Class")

 End Sub

 End Class

 Sub Main()

 Dim a As New del1(AddressOf check)

 Dim b As New del1(AddressOf multi)

 Dim ob As New deleg

 Dim c As New Display(AddressOf ob.Disp)

 Console.WriteLine(a(10, 20))

 Console.WriteLine(b(10, 20))

 c()

 Console.Read()

 End Sub

 End Module

Result:

 30

 200

 Method Inside Class

Description:

In the above Delegate example del1 is a delegate that gets two integer arguments and return an

integer. Using this delegate with the keyword AddressOf the values stored in the memory

location of the procedures check and multi are retreived.

Using the delegate Display the sub procedure Disp() inside the class deleg is also displayed.

The AddressOf operator creates a function delegate that points to the function specified

by procedurename. When the specified procedure is an instance method then the function

delegate refers to both the instance and the method. Then, when the function delegate is invoked

the specified method of the specified instance is called.

EVENTS

Events are basically a user action like key press, clicks, mouse movements, etc., or some occurrence like system

generated notifications. Applications need to respond to events when they occur.

Clicking on a button, or entering some text in a text box, or clicking on a menu item, all are examples of events. An

event is an action that calls a function or may cause another event.

Event handlers are functions that tell how to respond to an event.

VB.Net is an event-driven language. There are mainly two types of events:

 Mouse events

 Keyboard events

Mouse events occur with mouse movements in forms and controls. Following are the various mouse events related

with a Control class:

 MouseDown - it occurs when a mouse button is pressed

 MouseEnter - it occurs when the mouse pointer enters the control

 MouseHover - it occurs when the mouse pointer hovers over the control

 MouseLeave - it occurs when the mouse pointer leaves the control

 MouseMove - it occurs when the mouse pointer moves over the control

 MouseUp - it occurs when the mouse pointer is over the control and the mouse button is released

The event handlers of the mouse events get an argument of type MouseEventArgs

Following are the various keyboard events related with a Control class:

 KeyDown - occurs when a key is pressed down and the control has focus

 KeyPress - occurs when a key is pressed and the control has focus

 KeyUp - occurs when a key is released while the control has focus

The event handlers of the KeyDown and KeyUp events get an argument of type KeyEventArgs

EXAMPLE

Add the above mentioned controls and add the following mouse events code.

Public Class Form1

 Private Sub txtID_MouseEnter(sender As Object, e As EventArgs)Handles txtID.MouseEnter

 'code for handling mouse enter on ID textbox

 txtID.BackColor = Color.CornflowerBlue

 txtID.ForeColor = Color.White

 End Sub

 Private Sub txtID_MouseLeave(sender As Object, e As EventArgs) Handles txtID.MouseLeave

 'code for handling mouse leave on ID textbox

 txtID.BackColor = Color.White

 txtID.ForeColor = Color.Blue

 End Sub

End class

Add the following key events handling code

Private Sub txtID_KeyUP(sender As Object, e As KeyEventArgs) Handles txtID.KeyUp

If (Not Char.IsNumber(ChrW(e.KeyCode))) Then
MessageBox.Show("Enter numbers for your Customer ID")

txtID.Text = " "

End If

 In the above code for keyboard and mouse event, you can see, there are basically two

new things added:

o The event subroutine arguments sender and e

o The Handles clause

 The Handles clause allows the same subroutine to be used for all kinds of event calls like

mouse,key etc.

 The event handler arguments, sender and e, are the same for all event subroutines, in

part, so you can code an event subroutine that handles different types of events like the

example above.

 The sender argument provides information about the event that was raised. There's a

fairly small set of properties that sender provides directly.

 These properties carry just the basic information you need.

o Equals

GetHashCode

GetType

ReferenceEquals

ToString

 The sender arguement is often more useful if you instantiate an object using it. For

example, if you are processing a Button control:

o Dim myButton As Button = sender

 If you are processing a PictureBox control:

Dim myPicBox As PictureBox = sender

 Using these instances of controls, you can take advantage of the methods and properties

of the control. For example, you can get the Name of a control:

Dim myButton As Button = sender

 Debug.WriteLine(myButton.Name)

or

Dim myTextBox As TextBox = sender

Debug.WriteLine(myTextBox.Name)

 The argument e carries whether it s a mouse arguments or keyboard arguments.

ADO.NET

 Every organization maintains data storage for its business, employees and clients.

 This data must be easily accessible and updateable.

 The machine in which the backend database is stored is known as server.

 This Database can be accessed and used by front end applications through some

connectivity.

 The machine in which the application run is known as client.

 Previously ODBC was used for this purpose.

 ODBC – open database connectivity local/remote.

ADO – Active Data Object

 It is defined as object model.

 It comprises of objects, methods and properties.

 Methods – Access and update Data Sources.

 Properties – Control the behavior of the method.

ADO.NET OBJECT MODEL

 ADO.NET Object Model

The .Net Framework comprises of

1. Connection Oriented (or) Data Providers.

2. Disconnection Oriented (or) Datasets.

1. Connection Environment/ Data Providers:

In connected the application makes a connection to the Data source and then interacts with it

through SQL request using the same connection. In these cases the application stays connected to

DB system even when it is not using any Database operations.

2. Disconnected Oriented/ Datasets:

A datasets is an in – memory data store that can hold multiple tables at the same time. Datasets

can only hold data and do not interact with a data source.

DIRECT ACCESS (OR) .NET DATA PROVIDERS (OR) CONNETION

ENVIRONMENT

 Data providers act as a bridge between an application and database. It is used to retrieve

data from a database and send back to the database after changes.

 Connection Environment

.NET DATA PROVIDER

 We know that ADO.NET allows us to interact with different types of data sources and

different types of databases.

 However, there isn't a single set of classes that allow you to accomplish this universally.

 Since different data sources expose different protocols, we need a way to communicate

with the right data source using the right protocol.

 Some older data sources use the ODBC protocol, many newer data sources use the OleDb

protocol, and there are more data sources every day that allow you to communicate with

them directly through .NET ADO.NET class libraries.

 ADO.NET provides a relatively common way to interact with data sources, but comes in

different sets of libraries for each way you can talk to a data source.

 These libraries are called Data Providers and are usually named for the protocol or data

source type they allow you to interact with.

 Table 1 lists some well known data providers, the API prefix they use, and the type of

data source they allow you to interact with.

Table 1. ADO.NET Data Providers are class libraries that allow a common way to interact

with specific data sources or protocols. The library APIs have prefixes that indicate which

provider they support.

Provider Name
API

prefix
Data Source Description

ODBC Data

Provider
Odbc Data Sources with an ODBC interface. Normally older data bases.

OleDb Data

Provider
OleDb Data Sources that expose an OleDb interface, i.e. Access or Excel.

Oracle Data

Provider
Oracle For Oracle Databases.

SQL Data

Provider
Sql For interacting with Microsoft SQL Server.

Borland Data

Provider
Bdp

Generic access to many databases such as Interbase, SQL Server,

IBM DB2, and Oracle.

Connection Object

 These objects are used to create a connection to the database for moving data between the

database and user application.

 The connection can be created using.

SQL Connection Object

Open (), close (), and dispose () are the methods of connection object used to open and close the

defined connection.

Dim conn As SQLConnection

conn = New SQLConnection ()

conn.connectionstring =”datasource =asdf; initial catalog =stud; userId =sa; pwd =123”

conn.open ()

 Datasource is the name of the SQL server which is to be connected.

 Initial Catalog is the name of the database.

 Used Id is the SQL server login account and pwd is the password.

The user must close the connection after using it. This is done by either close (or) dispose

method.

 conn.close ()

Command Objects

 These command objects are used to read, add, update and delete records in a database.

These operations are done by sql command objects.

Methods: Execute Reader ()

 Execute Non Query ()

Properties: connection, command text.

Execute Reader () method is used to execute the commands and retrieve rows from the database.

Execute Non Query () method is used to execute the command without retrieving any row.

 Dim conn As sqlconnection

 Dim comm As sqlcommand

 comm. = New sql command ()

 comm.connection = conn

 comm.commandText = “select * from Stud Table”

Data Reader Objects

 These objects are used to read row wise data in read only format from databases. Sql

Data Reader object is used.

Execute Reader () – is used to retrieve a row from database.

Read () – is used to obtain a row from the result of the query.

Get String () – is used to access a column value in a selected row.

Close () – must be called after the use of Data Reader Objects.

 Example:

 Dim conn As Sqlconnection

 Dim comm As Sqlcommand

 Dim rd As SqlDataReader

 conn = New Sqlconnection ()

 conn = New Sqlconnection ()

 conn.connection string = “Datasource = asdf; Initial catalog =college; UserId =sa; pwd

=123”

 conn.open ()

 comm = New Sqlcommand ()

 comm.connection = conn

 comm.commandText = “select * from staff”

 rd = comm.ExecuteReader

Sample C # Program for Connection Environment:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Data;

using System.Data.SqlClient;

namespace ConsoleApplication1

{

class Program

{

 static void Main(string[] args)

{

string connectionString = "Data Source=CENTRE-I-62;Initial Catalog=management;Integrated

Security=True";

string query1 = "select * from employee";

SqlConnection cn = new SqlConnection(connectionString);

cn.Open();

SqlCommand cmd1 = new SqlCommand(query1, cn);

SqlDataReader dr1 = cmd1.ExecuteReader();

while (dr1.Read())

{

Console.WriteLine(dr1[0] + " " + dr1[1] + " " + dr1[2] + " " + dr1[3] + " " + dr1[4]);

}

cn.Close();

Console.ReadLine();

 } } }

INDIRECT ACCESS (OR) DATASETS (OR) DISCONNECTED ENVIRONMENT

Dataset is a temporary storage of records. The dataset represents a complete set of data including

tables and their relationships.Dataset must contain atleast one data table object in its data table

collection.

Each Data Table contains both a

1. Data Row Collection

2. Data Column Collection

Objects of Datasets are

1. Data Table Collection

2. Data Tables

3. Data Row Data Adapter Objects

Fig 4.3 Disconnected Environment

SqlDataAdapter OBJECT

This object is used to exchange Data between a database and a Dataset. It reads data from the

database to the dataset and then writes the changed data back to the database.

Properties:

Select Command (Accessing Rows in a Database)

Insert Command (Inserting rows in the Database)

Update Command (For modifying rows in the Database)

Delete Command (For deleting rows)

FILL Method:

It is used to write the result of select command into the dataset.

Example:

 Dim Myadapter As New SqlDataAdapter

 Myadapter.select command = mycomm

 Dim Mydataset As New Dataset ()

 Myadapter.Fill (Mydataset, stud Table)

 conn.close ()

Data Table Collection Object:

It is used to provide one or more tables represented by data Table object. It contains collections

such as Data Column Collection, Data Row Collection.

Data Table Object:

It contains a single table of memory resident data. It contains a collection of rows represented by

Data Row Collection, a collection of columns represented by data Column collection.

Data Row Object:

It contains methods and propeties, to retrieve, insert, delete and update the values in the Data

Table.

Add () – Add a new Data Row in the Data Collection.

Remove () – Delete a Data Row from the Data Row Collection

Accept Changes () – Confirm the Addition.

New Row () – Add New Row.

EXAMPLE

POPULATING COMBO BOX WITH SOURCE CITY NAMES DATASET

note:

1. Create a database with table containing two fields source_id,source_name and enter

some city names.

2. In c# window form put a combo box and in form load enter the following coding

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.Data.SqlClient;

namespace WindowsApplication1

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 private void Form1_Load(object sender, EventArgs e)

 {

 string connetionString = null;

 SqlConnection connection;

 SqlCommand command;

 SqlDataAdapter adapter = new SqlDataAdapter();

 DataSet ds = new DataSet();

 //int i = 0;

 string sql = null;

 connetionString = "Data Source=MIT-LAB2-SYS9;Initial Catalog=source;Persist

Security Info=True;User ID=sa;Password=mit123";

 sql = "select source_id,source_name from source_table";

 connection = new SqlConnection(connetionString);

 connection.Open();

 command = new SqlCommand(sql, connection);

 adapter.SelectCommand = command;

 adapter.Fill(ds);

 adapter.Dispose();

 command.Dispose();

 connection.Close();

 comboBox1.DataSource = ds.Tables[0];

 comboBox1.ValueMember = "source_id";

 comboBox1.DisplayMember = "source_name";

 }

 }

}

UNIT V: J2EE

5.1 ENTERPRISE EDITION OVERVIEW

 The Java 2 Platform, Enterprise Edition (J2EE) defines the standard for developing

multitier enterprise applications.

 The J2EE platform simplifies enterprise applications by basing them on standardized,

modular components, by providing a complete set of services to those components, and

by handling many details of application behavior automatically, without complex

programming.

 The J2EE platform takes advantage of many features of the Java 2 Platform, Standard

Edition (J2SE), such as "Write Once, Run Anywhere" portability, JDBC API for database

access, CORBA technology for interaction with existing enterprise resources, and a

security model that protects data even in internet applications.

 Building on this base, the Java 2 Platform, Enterprise Edition adds full support for

Enterprise JavaBeans components, Java Servlets API, JavaServer Pages and XML

technology.

 The J2EE standard includes complete specifications and compliance tests to ensure

portability of applications across the wide range of existing enterprise systems capable of

supporting the J2EE platform. In addition, the J2EE specification now ensures Web

services interoperability through support for the WS-I Basic Profile.

 The Java 2 Enterprise Edition (J2EE) provides a standard for developing multitier,

enterprise services.

 J2EE architecture supports component-based development of multi-tier enterprise

applications. A J2EE application system typically includes the following tiers:

 Client tier: In the client tier, Web components, such as Servlets and JavaServer

Pages (JSPs), or standalone Java applications provide a dynamic interface to the

middle tier.

 Middle tier: In the server tier, or middle tier, enterprise beans and Web Services

encapsulate reusable, distributable business logic for the application. These server-tier

components are contained on a J2EE Application Server, which provides the platform

for these components to perform actions and store data.

 Enterprise data tier: In the data tier, the enterprise's data is stored and persisted,

typically in a relational database.

 J2EE applications are comprised of components, containers, and services.

Components are application-level components.

 Web components, such as Servlets and JSPs, provide dynamic responses to requests

from a Web page.

 EJB components contain server-side business logic for enterprise applications.

 Web and EJB component containers host services that support Web and EJB

modules.

5.1.1. Java 2 Enterprise Edition Architecture

 J2EE uses a 4-level model for web development.

 The browser runs on the client displaying HTML and optionally runs JavaScript.

 The middle tier is comprised of two layers: a Presentation Layer and a Business Logic

Layer.

 The data manages persistent data in a database and, where appropriate, legacy data

stores.

 J2EE implements the Presentation Layer with Servlets and, more recently, Java

provides the option to generate webpages with dynamic content using JavaServer

Pages (JSP).

 Servlets/JSP generate webpages with dynamic content (typically originating from the

database).

 They also parse webpages submitted from the client and pass them to Enterprise

JavaBeans for handling. Servlets and JSPs run inside a Web Server.

 J2EE implements the Business Logic layer with Enterprise JavaBeans (EJB).

Enterprise JavaBeans are responsible for logic like validation and calculations as well

as provided data access (e.g. database I/O) for the application. Enterprise JavaBeans

run inside an Application Sever.

 Under J2EE, EJBs access a database through one of two means:

1. •using a JDBC interface which requires a lower level of coding and/or

2. •using SQLJ which provides a higher level interface to the database

 In addition to these components for web application, J2EE provides for access by non-

web clients to the business logic layer. A standalone Java application (IIOP client) can

access an EJB directly using J2EE’s Remote Method Invocation (RMI) API.

5.1.2 Supporting J2EE APIs

J2EE provides a number of “supporting” APIs. The purpose of most of these APIs is to enable

interaction between the “main” software layers/components in the J2EE architecture.

•Remote Method Interface (RMI)

•Java Naming and Directory Interface (JNDI)

•Java Message Service (JMS)

•Java Transaction API (JTA)

•Java Database Connectivity (JDBC) / SQLJ

•JavaMail /JMC

Remote Method Interface (RMI)

 RMI is an important API used for supporting distributed computing and has been

supported in core Java since version 1.1. RMI allows a Java client application to

communicate with a Java server application by invoking methods on that remote object.

 With RMI, the client gets a reference to a server object and then it can invoke methods on

that object as if it were a local object within the same virtual machine.

 For server objects developed in other languages, you must employ other techniques like

using Java IDL with CORBA or RMI/IIOP to access the server object.

Java Naming and Directory Interface (JNDI)

 JNDI allows Java programs to use name servers and directory servers to look up objects

or data by name. This important feature allows a client object to locate a remote server

object or data.

 JNDI is a generic API that can work with any name or directory servers. Server providers

have been implemented for many common protocols (e.g. NIS, LDAP and NDS) and for

CORBA object registries.

 Of particular interest to users of J2EE, JNDI is used to locate Enterprise JavaBean (EJB)

components on the network.

Java Message Service (JMS)

 JMS is an API for using networked messaging services.

 Data sent in a message is often intended as a sort of event notification (e.g. a Email-

handling process may need to be notified when a request is enqueued).

 Another common use for messaging (thus JMS) is for interfacing with “external”, third

party or legacy applications, typically via a Message Oriented Middleware product like

IBM’s MQ Series (now WebSphere MQ).

 It can be complex/risky to use RPC/RMI to directly invoke remote applications while a

messaging solution can provide a simpler and more reliable interconnection.

5.2 Multi-Tier Architecture

 The J2EE platform uses a multitiered distributed application model.

 Application logic is divided into components according to function, and the various

application components that make up a J2EE application are installed on different

machines depending on the tier in the multitiered J2EE environment to which the

application component belongs. Client-tier components run on the client machine.

 J2EE multi-tiered applications are generally considered to be three-tiered applications

because they are distributed over three different locations

 Client machines

 The J2EE server machine

 The database or legacy machines at the back end

Fig 5.1 Multitiered Applications

 Web-tier components run on the J2EE server.

 Business-tier components run on the J2EE server.

 Enterprise information system (EIS)-tier software runs on the EIS server.

 Although a J2EE application can consist of the three or four tiers shown, J2EE

multitiered applications are generally considered to be three-tiered applications because

they are distributed over three different locations: client machines, the J2EE server

machine, and the database or legacy machines at the back end.

 Three-tiered applications that run in this way extend the standard two-tiered client and

server model by placing a multithreaded application server between the client application

and back-end storage.

Fig 5.2 J2EE Components

 J2EE applications are made up of components.

 A J2EE component is a self-contained functional software unit that is assembled into a

J2EE application with its related classes and files and that communicates with other

components.

 The J2EE specification defines the following J2EE components:

 Application clients and applets are components that run on the client.

 Java Servlet and JavaServer Pages (JSP) technology components are Web

components that run on the server.

 Enterprise JavaBeans (EJB) components (enterprise beans) are business

components that run on the server.

 J2EE components are written in the Java programming language and are compiled in the

same way as any program in the language.

 The difference between J2EE components and "standard" Java classes is that J2EE

components are assembled into a J2EE application, verified to be well formed and in

compliance with the J2EE specification, and deployed to production, where they are run

and managed by the J2EE server.

5.2.1 J2EE Clients

 A J2EE client can be a Web client or an application client.

Web Clients

 A Web client consists of two parts: dynamic Web pages containing various types of

markup language (HTML, XML, and so on), which are generated by Web components

running in the Web tier, and a Web browser, which renders the pages received from the

server.

 A Web client is sometimes called a thin client.

 Thin clients usually do not do things like query databases, execute complex business

rules, or connect to legacy applications.

 When you use a thin client, heavyweight operations like these are off-loaded to enterprise

beans executing on the J2EE server where they can leverage the security, speed, services,

and reliability of J2EE server-side technologies.

Applets

 A Web page received from the Web tier can include an embedded applet.

 An applet is a small client application written in the Java programming language that

executes in the Java virtual machine installed in the Web browser.

 However, client systems will likely need the Java Plug-in and possibly a security policy

file in order for the applet to successfully execute in the Web browser.

Application Clients

 A J2EE application client runs on a client machine and provides a way for users to handle

tasks that require a richer user interface than can be provided by a markup language.

 It typically has a graphical user interface (GUI) created from Swing or Abstract Window

Toolkit (AWT) APIs, but a command-line interface is certainly possible.

 Application clients directly access enterprise beans running in the business tier. However,

if application requirements warrant it, a J2EE application client can open an HTTP

connection to establish communication with a servlet running in the Web tier.

5.3 Best Practices in J2ee

A Best Practice is a proven technique for achieving a desired result. It is a repeatable

technique that has been successful in real life situations, and can be broadly applied across

many problems.

Best practices in two major sections:

1. Best practices in theory.

2. Best practices in practice.

5.3.1 Development Life Cycle

The most critical element of any application development philosophy is the methodology

that defines the entire application development cycle. Since methodologies used to make

modern J2EE applications are so diverse, we will not endorse any particular

methodology.Instead, we will define five relatively generic steps that any significant

development method will need to support. The best practices under each can then be

integrated into your development cycle.

Fig 5.3 Development Life Cycle

The above Fig shows the major steps in a development cycle, and the areas in which Best

Practices can be applied for each step.

Development life cycle

Attack risk as early as possible

Design

 Design for change with dynamic domain model

 Use a standard modeling language

 Recycle your resources

Develop

 Use proven design patterns

 Automate the build process

 Integrate often

 Optimize communication costs

Test

 Build test cases first

 Create a testing framework

 Automate testing

Deploy

 Use j2ee standard packaging specification

 Use tools to help in deployment

 Back up your production data and environment

Tune

 Build a performance plan

 Manage memory and plug leaks

 Focus on priorities

Environments

 Do not restrict deployment options at design time

 Create a responsive development environment

5.4 COMPARISON BETWEEN J2EE AND .NET

Both .NET and J2EE target the enormous market for enterprise applications and Web services.

This quick-comparison provides a basic sense of advantages and disadvantages carried by both

frameworks in various areas.

Orientation

J2EE is Java-centric and platform neutral, while .NET is Windows-centric and language-neutral.

This means developers are restricted to Java language in the J2EE and Windows in the .NET

framework.

Difference in Strategies

J2EE is basically a series of standards. One the other hand, .NET is Microsoft's product strategy

based on evolution of its Visual Studio 6.0.

Industry Involvement

Sun has rallied the entire industry behind its J2EE standard, especially the top software vendors

who have adapted the J2EE interface such as BEA, IBM, and Oracle. On the other hand, .NET is

based on Microsoft's sole efforts to grab the Web services market share.

Rapid Application Development

 Both .NET and J2EE offer rapid application deployment features in their own way.

 Some are more powerful in .NET compared with J2EE and vice versa. J2EE offers state

management services to ease up developers on writing code and managing state.

 On the other hand, the real advantage behind ASP.NET is that it is independent of client

device and allows for user interfaces to be rendered to alternative user interfaces without

rewriting code.

Pros and Cons of Single Vendor Solutions

 J2EE offers solutions from multiple vendors with a wide variety of tools, products and

applications.

 This does provide additional and varied functionality but at a cost

 J2EE tools often times are not interoperable due to problems in portability.

 On the other hand, .NET provides a complete solution of tools and services from

Microsoft, but which may lack some of the higher-end features found in J2EE solutions.

Platform Maturity

 Large J2EE vendors such as BEA, Borland, Sybase offer tried and tested solutions to

their large customer base.

 J2EE does have certain aspects that are new and immature such as automatic persistence

provided by EJB, Java Connector Architecture, and Web services support.

 In the case of Microsoft, some of the .NET is based on Windows DNA but most of it is

rewritten as far as the new CLR is concerned.

 Moreover, C# language and Web services support is new and according to many testers,

.NET VB is very different from the earlier VB version.

 Hence, we can say that in the overall sense J2EE is the more mature platform.

The Language Factor

 Java programming language is at the center of J2EE.

 All components such as EJB and servlets that are deployed in J2EE framework are also

written in Java.

 Although JVM byte code is language-neutral, but in practice this byte code can only be

used with Java.

 On the other hand, the .NET framework, based on the new CLR, enables development in

any language that is supported by Microsoft's tools.

 The pro of this multi-language support is that a single .NET component can be written in

several languages.

 As far as the cons is concerned, first you need experts in different languages to fully

develop, debug and maintain a particular application written in multiple languages.

 it requires a significant cost in training and retaining knowledgeable developers.

The Portability Factor

 Since Java Runtime Environment (JRE) is available on any platform -- Win 32, Unix,

Mainframe -- there is no doubt about easy and effective J2EE portability.

 In the .NET case, the portability aspect is not promising since industry analysts are

skeptical of Microsoft's claims regarding Multiple platform support based on the

company's lackluster performance in meeting industry expectations.

Web Services Support

 J2EE enables eBusiness collaboration and Web services through its JAXP (Java API for

XML Parsing).

 .NET does create Web services but due to its beta release it does not earn much

credibility as a realistic deployment platform.

 Moreover, .NET's lack of support for ebXML poses a real problem for its industry-wide

acceptability.

Tools

 Current IDEs for Java development include WebGain's Visual Cafe, IBM's VisualAge for

Java, Borland's JBuilder, etc.

 These tools are not entirely interoperable because they do not originate from a single

vendor.

 On the other hand, Microsoft's Visual Studio .NET has remarkable productivity features

that include Web forms, .NET's GUI component set, and much more.

 The aspect of single-vendor integration, wizards, and other user-friendly features are

highly advantageous for building Web services.

Hardware Costs

Both .NET and J2EE support Win32 platform, a less expensive alternative to Unix and

Mainframe systems. In general, Microsoft's solution has an aggressive price comparative to J2EE

that offers varied price and service levels from high-end to low-end inexpensive solutions.

Performance and Developer Empowerment

J2EE is an ideal platform for educated and knowledgeable developers to leverage the

programming control over lower-level services such as state management and caching. In

comparison, .NET architecture lacks lower-level performance improvement services, blocks

introduction of errors into the system and is thus more suitable for developers who require more

hand-holding.

5.4.1 The Features Of .Net And J2ee

Table 5.1 Comparison of .net and J2ee Features

	WORKING WITH FORMATTERS
	ADVANTAGES AND DISADVANTAGES OF SERIALIZATION
	Advantages
	Disadvantages
	Structures(write all)
	Delegates(write all)
	Enumerations(write all)

	Types of .NET Remotable Objects
	Single Call
	Singleton Objects
	Client-Activated Objects (CAO)

	DATA TYPES
	The Boolean Type
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	EXAMPLE
	Assignment Operators
	Misc Operators
	2.1.5 Control Statements - Loops

	Loop Control Statements:
	Declaring Interfaces
	Syntax
	Exception Classes in C#
	Handling Exceptions
	Declaring Delegates
	Instantiating Delegates
	INITIALIZING TWO-DIMENSIONAL ARRAYS
	Various Collection Classes and Their Usage
	The Regex Class
	Base and Derived Classes
	Implementation of Operator Overloading
	Overloadable and Non-Overloadable Operators
	Objects:
	CREATING ARRAYS IN VB.NET
	MULTI-DIMENSIONAL ARRAYS
	Syntax
	Exception Classes in .Net Framework
	Handling Exceptions

