
CS E61 OBJECT ORIENTED ANALYSIS AND DESIGN

Mrs.VaralakshmiMurugan,Dr.S.Pariselvam,Dept of CSE,MVIT 1

DEPARTMENT OF CSE

OBJECT ORIENTED ANALYSIS AND DESIGN

UNIT I

Object Oriented Methodologies: Software System Life Cycle – Traditional cycle models –

Object Oriented approach – Rambaugh et al Object Modeling Technique – Booch Methodology –

Jacobsonet al methodology –Rational Unified Process (RUP) – Unified Modeling Language

(UML) – UML Models.

1.1 THE SYSTEM LIFE CYCLE

 Framework is very important for the development of a software system.An agreed framework

for development brings many advantages:

o A framework provides an overall picture of the development process; this picture is not

cluttered by detail of what goes on at any stage in the process, but is useful as a high-level

view of the major areas of activity, milestones and project deliverables.

o A framework provides a basis for development and ensures a certain level of consistency

in how the work is approached.

o Consistency approach is very important when large of developers are involved in the

project after it has started.

o A framework plays a significant role in ensuring quality, both of the development process

and of the final system, by providing a structure for project management- planning,

monitoring and controlling the development project.

 In software system development, a framework has traditionally been known as a system life

cycle model.

 The stages that have been referred for life cycle as requirements, analysis, design,

implementation and installation. Each stage is concerned with particular issues and produces a

set of outputs or deliverables shown in the below table

CS E61 OBJECT ORIENTED ANALYSIS AND DESIGN

Mrs.VaralakshmiMurugan,Dr.S.Pariselvam,Dept of CSE,MVIT 2

1.2 TRADITIONAL LIFE CYCLE:

 The most important traditional life cycle models are:

1.2.1 Waterfall Model :

o This is the early life cycle model; stages of development are straightforward sequence.

o It describes a development method that is linear and sequence

o It has distinct goals for each phase of development.

CS E61 OBJECT ORIENTED ANALYSIS AND DESIGN

Mrs.VaralakshmiMurugan,Dr.S.Pariselvam,Dept of CSE,MVIT 3

o Once a phase of development is completed, the development proceeds to the next phase

and is turning back.

Requirements: List of requirements for development.

Design: Process of problem solving and planning for a software solution.

Implementation: Coding

Testing: Make sure that the complete system meets software requirements.

Maintenance: modification of the product after deliver to correct faults.

1.2.2 V-model:

o Stages are visualized in the form of the letter 'V'.

o It emphasizes how later stages of development are related to earlier stages; for example,

how testing should be derived from the activities that are carried out during requirements

and analysis.

1.2.3 Spiral.

o It incorporates iteration of life cycle stages and focuses on identifying and addressing the

risks involved in development.

o At each iteration around the cycle, the products are extensions of an earlier stage.

1.2.4 Prototyping.

o In the prototyping life cycle, implementation takes place early in the development process.

o The working model produced is subsequently refined and enhanced during a series of

iterations until it is acceptable to the client.

1.2.5 Iterative Development:

Requirement

Design

Implementation

Verification

Maintenance

CS E61 OBJECT ORIENTED ANALYSIS AND DESIGN

Mrs.VaralakshmiMurugan,Dr.S.Pariselvam,Dept of CSE,MVIT 4

o This approach is closely related to the spiral model and to prototyping.

o It covering the complete functionality of the system is produced and then refined as

development progresses.

1.2.6 Incremental development.

o In this life cycle model the system is partitioned according to areas of functionality.

o Each major functional area is developed and delivered independently to the client.

1.3 THE OBJECT-ORIENTED APPROACH

 One of the differences that is immediately obvious between traditional life cycle models and

the object-oriented approach is the way that the various stages are named.

Traditional Life Cycle model Object Oriented approach

Traditional model the name, such as

‘analysis’ or ‘implementation’, reflects the

activities that are intended to be carried out in

that stage.

A clear distinction is made between the

activities and the stages (generally referred to

as phases) of development.

Phases are inception, elaboration,

construction and transition. indicating the

state of the system

1.3.1 Phases

o Inception:

It covers the initial work required to set up and agree terms for the project. It

includes establishing the business case for the project, incorporating basic risk assessment

and the scope of the system that is to be developed.

o Elaboration:

It deals with putting the basic architecture of the system in place and agreeing a

plan for construction. During this phase a design is produced that shows that the system can

be developed within the agreed constraints of time and cost.

o Construction:

It involves a series of iterations covering the bulk of the work on building the

system; it ends with the beta release of the system, which means that it still has to undergo

rigorous testing.

CS E61 OBJECT ORIENTED ANALYSIS AND DESIGN

Mrs.VaralakshmiMurugan,Dr.S.Pariselvam,Dept of CSE,MVIT 5

o Transition

It covers the processes involved in transferring the system to the clients and users.

This includes sorting out errors and problems that have arisen during the development

process.

 In object-orientation, activities such as analysis or design are referred to as workflows. The

below figure shows the different workflows that typically take place during a system

development project.

 It is recognized that a workflow may be carried out at more than one development phase and

that developers may well engage in the whole range of workflows during every phase of

building a system.

 During the construction phase the main activities will be implementation and testing, but if

bugs are found there will have to be some requirements and analysis as well.

 The OO approach to development views the relationships between workflows and phases of

development rather like the spider’s web in the below figure, where any phase may involve all

workflows, and a workflow may be carried out during any phase.

CS E61 OBJECT ORIENTED ANALYSIS AND DESIGN

Mrs.VaralakshmiMurugan,Dr.S.Pariselvam,Dept of CSE,MVIT 6

 The object-oriented approach also recognizes fully the reality of iterative development.

Activities at any phase do not take place in a neatly ordered fashion.

 A developer may have to revisit a range of workflows several times during one phase of

development, before it is possible to move on to the next phase.

 The below figure illustrates the phases of the object-oriented life cycle with iteration of

workflows at each phase.

 In the diagram that iterations are most likely during construction, but can occur during any

phase of development. Each ellipse represents a range of workflows.

CS E61 OBJECT ORIENTED ANALYSIS AND DESIGN

Mrs.VaralakshmiMurugan,Dr.S.Pariselvam,Dept of CSE,MVIT 7

 In addition to the emphasis on iterative development, the object-oriented approach also differs

from traditional life cycle models in that it stresses the importance of a seamless development

process.

 This means that the separate phases are less distinct from each other than in a traditional

system life cycle; it is not considered essential, nor is it often easy, to be able to say precisely

when one phase is completed and another begins.

 Although the traditional system life cycle was concerned about issues such as quality, ease of

modification and potential reuse, it tended to regard them as add-ons to the core development

process.

 In the object-oriented approach such issues are regarded as central, and developers are

encouraged to bear them in mind throughout the time they are working on the system.

1.3.1 RAMBAUGH ET AL OBJECT MODELING TECHNIQUE

 Object modelling techniques (OMT) presented by Jim Rambaugh describes a method for

the analysis, design and implementation of a system using OOT.

 It is a fast, intuitive approach for identifying and modelling all the object making up a

system. This model lets you specify detailed state transitions their descriptions within in a system.

It consists of 4 phases:

1. Analysis: The results are objects and dynamic and functional models.

2. System Design: The results are structure of a basic architecture of the system along with

the high –level strategy decisions.

3. Object Design: This phase produce a design document, consisting of a detailed objects

static, dynamic and functional models.

4. Implementation: This activity produces reusable, extendible and robust code.

 OMT separates modeling into three different parts:

1. Object model: presented by the object model and data dictionary.

2. Dynamic model: presented by the state diagrams and event flow diagrams.

3. Functional model: presented by data flow and constraints.

CS E61 OBJECT ORIENTED ANALYSIS AND DESIGN

Mrs.VaralakshmiMurugan,Dr.S.Pariselvam,Dept of CSE,MVIT 8

1.3.1 THE OBJECT MODEL

 It describes structure of object in the system; their identity and relationship to other

objects, attributes and operations. The figure below shows object model with graphical

representation

1.3.2 THE DYNAMIC MODEL

 It provides detailed and comprehensive dynamic model, in addition to letting you depict

states, transitions, events and actions. The below figure shows state transition is a network of

states and events.

CS E61 OBJECT ORIENTED ANALYSIS AND DESIGN

Mrs.VaralakshmiMurugan,Dr.S.Pariselvam,Dept of CSE,MVIT 9

1.3.3 THE FUNCTIONAL MODEL

 It shows the flow of data between different processes in a business. The OMT DFD

provides a simple and intuitive method for describing business processes without focusing on the

details of computer systems. DFD use 4 primary symbols:

1. The process is any function being performed; example verifying Password/PIN in ATM.

2. The data flow shows the direction of data element movement; example PIN code.

3. The data store is a location where the data are stored; example account data store in ATM

4. The external entity is a source/ destination of a data element; example ATM card reader

1.4 THE RATIONAL UNIFIED PROCESS (RUP)

 A life cycle provides a high-level representation of the stages that a development project must

go through to produce a successful system.

 A development method, on the other hand, is much more prescriptive, often setting down in

detail the tasks, responsibilities, processes, prerequisites, deliverables and milestones for each

stage of the project.

 Nowadays, almost all object-oriented projects use the Unified Modeling Language as the

principal tool in their development process.

CS E61 OBJECT ORIENTED ANALYSIS AND DESIGN

Mrs.VaralakshmiMurugan,Dr.S.Pariselvam,Dept of CSE,MVIT 10

 Use of the UML has been approved by the Object Management Group (OMG), which controls

issues of standardization in this area. This has resulted in conformity between projects in

terms of notation and techniques.

 The creators of the UML have proposed a generic object-oriented development The Unified

Software Development Process (Jacobson et al., 1999) and this generic method has been

adopted and marketed by the Rational Corporation under the name of the Rational Unified

Process (RUP).

 RUP is based on the following six 'Best Practices'

1 Develop software iteratively

2 Manage requirements

3 Use component-based architectures

4 Visually model software

5 Verify software quality

6 Control changes to software.

1. Develop software iteratively

o RUP follows the phases of the generic object-oriented life cycle (inception, elaboration,

construction and transition). It is built on the central concept of iterative development and

each of its phases defines a series of activities that may be performed once or a number of

times.

o Each iteration is defined as a complete development loop resulting in the release of an

executable product that is a subset of the final system.

o In this way RUP supports incremental development- the frequent release of small packages

of software that gradually build up to become the final system.

o Iteration and incremental development encourage involvement and feedback from clients

and users; they make it easier to cope with changes, and reduce the risk factors associated

with any development project.

2. Manage requirements

o RUP offers sound support for eliciting, organizing and recording requirements. Precise

documentation of requirements facilitates traceability through the development process,

which enhances the quality of the final system.

CS E61 OBJECT ORIENTED ANALYSIS AND DESIGN

Mrs.VaralakshmiMurugan,Dr.S.Pariselvam,Dept of CSE,MVIT 11

o The emphasis on the activities that take place early on in the life cycle provides a sound

foundation for the later stages and results in systems that are robust, reliable and meet the

needs of their users.

3. Use component-based architectures

o RUP prescribes the early identification and development of a system structure that is at the

same time robust enough to ensure system reliability, and flexible enough to accommodate

changes. This is achieved through the use of components subsystems that each have a

single, well-defined function.

o RUP describes how to construct an architecture combining both new and previously

existing components, thus encouraging the reuse of software as part of the development

process.

4. Visually model software

o RUP is based around the Unified Modelling Language (UML) as a vehicle for

development. UML has become an industry standard, and incorporates a wide range of

techniques and tools to support developers. The techniques offered by UML bring with

them all the advantages of visual modelling.

o For example, UML diagrams facilitate communication between developers and users and

between members of the development team, they offer a number of different views of

the system which combine to give a complete picture, they help developers to

decompose the problem into smaller, more manageable chunks, and they provide a

means of abstraction, concentrating on important information while hiding details that

are currently irrelevant.

5. Verify software quality

o RUP provides the techniques to support quality assessment of functionality, reliability and

performance throughout the development process.

o The RUP approach to quality is based on objective measures and criteria for success; it

involves all members of the development team and applies to all the activities that are

carried out as part of the system development.

CS E61 OBJECT ORIENTED ANALYSIS AND DESIGN

Mrs.VaralakshmiMurugan,Dr.S.Pariselvam,Dept of CSE,MVIT 12

6. Control changes to software

o Changes are the norm in a software development project, so an effective development

process must be able to monitor and control them.

o RUP provides tools to do this, and also supports the work of developers by offering

protection in one area of development from changes that occur in another.

1.5 UNIFIED MODELLING LANGUAGE (UML)

 The Unified Modelling Language, or UML, is a set of diagrammatic techniques, which are

specifically tailored for OOD, and which have become an industry standard for modelling object-

oriented systems.

1.5.1 Modelling:

 Software developers use specialized diagrams to model the system that they are working

on throughout the development process. Each model produced represents part of the system or

some aspect of it, such as the structure of the stored data, or the way that operations are carried

out. Each model provides a view of the system, but not the whole picture.

1.5.2. Abstraction:

 The characteristic of a model to provide some but not all the information about the person

or thing being modelled is known as abstraction. Each of the modelling techniques in the Unified

Modelling Language provides a particular view of the system as it develops; each UML model is

an abstraction of the complete system.

 Abstraction, concentrates on only those aspects of the system that are currently of interest,

and putting other details to the side for the time being.

1.5.3. Decomposition:

 This is the breaking down of a large, complex problem or system into successively

smaller parts, until each part is a 'brain-size' chunk and can be worked on as an independent unit.

 Traditionally software systems used to be decomposed according to their functions - the

tasks that the system had to carry out. In OO, systems are decomposed according to the data that

they have to store, access and manipulate.

CS E61 OBJECT ORIENTED ANALYSIS AND DESIGN

Mrs.VaralakshmiMurugan,Dr.S.Pariselvam,Dept of CSE,MVIT 13

1.6 UML MODELS

 The UML is not a development method since it does not prescribe what developers should

do, it is a diagrammatic language or notation, providing a set of diagramming techniques that

model the system from different points of view.

 The below table shows the principal UML models with a brief description of what each can

tell us about the developing system.

 The 4 + 1 view. The authors of UML, Booch et al., (1999), suggest the architecture of a system

from five different perspectives or views:

o The use case view

o The design view

o The process view

o The implementation view

o The deployment view.

CS E61 OBJECT ORIENTED ANALYSIS AND DESIGN

Mrs.VaralakshmiMurugan,Dr.S.Pariselvam,Dept of CSE,MVIT 14

 This is known as the 4 + 1 view (rather than the 5 views) because of the special role played by

the use case view.

The Use Case view:

 it specifies what the user wants the system to do; the other 4 views describe how to

achieve this.

 The use case view describes the external behaviour of the system and is captured in the

use case model

The Design view:

 It sometimes called as logical view. Describes the logical structures required to provide

the functionality specified in the use case view.

 The design view describes the classes (including attributes and operations) of the

system and their interactions.

The Process view:

 It is concerned with describing concurrency in the system.

 Sequence diagram can be used to achieve it.

The Implementation view:

 It describes the physical software components of the system, such as executable files, class

libraries and databases.

 The view of the system can be modelled using component diagram

The Deployment view:

 This view describes the hardware components of the system such as PCs, mainframes,

printers and the way they are connected.

 This view can also be used to show where software components are physically installed on

the hardware elements.

